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NEUROMORPHIC OPTICAL SIGNAL PROCESSING
AND IMAGE UNDERSTANDING FOR AUTOMATED TARGET

RECOGNITION

1. INTRODUCTION

The goal of research described in this report is study

of computation and learning in neural net models and

demonstration of their utility in image understanding and

neuromorphic information processing systems for remote

sensing and target identification.

The approach to achieving this goal has two facets. One

is combining innovative architectures and methodologies with

suitable algorithms to exploit existing and emerging photonic

technology in the implementation of large-scale

neurocomputers for use in: (a) the study of complex self-

.rganizing and learning systems, (b) fast solution of

0- . tion problems, (c) feature extraction, (formation of

object Lepresentation), and (d) pattern recognition. The

second facet of the approach is to demonstrate and assess the

capabilities of neuromorphic processing in solution of

selected inverse-scattering and recognition problems. The

problem we have chosen to study as test bed for our work is

that of automated radar target recognition because of our

existing capabilities and expertise in this area.)

A summary of accomplishments during this r porting

period is as follows: -
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Demonstration of the first fully operational

optoelectronic or photonic stochastic learning

machine (Boltzmann Machine) employing fast annealing

by controlled optical injection of noise (noisy

thresholding) for optimization and stochastic

learning with binary weights.

Demonstration of neuromorphic target classification

and identification from a single look (single

broadband echo) employing realistic broadband

microwave scattering data from scale-models of

actual targets collected in our anechoic chamber

radar scattering facility.

Discovery that most neural net classifiers lack

cognitive ability, that is ability to differentiate

on their own between familiar and unfamiliar or

novel inputs. We have evidence in support of the

hypothesis that in order to incorporate cognition, a

neural net must be nonlinear and dynamical capable

of computing with more than one type of attractor

and of bifurcating between different attractors

depending on the nature of the input (familiar or

novel). When the input is familiar the net computes

with one type of attractor and when it is novel it

computes with another type and this can serve as

mechanism for cognition.
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A more detailed description of these findings is given

in the next section and in the Appendices.

2. RESEARCH ACCOMPLISHMENTS

Stochastic Learning Machine: In this aspect of our

research we have successfully demonstrated what we believe to

be the first fully operational optical learning machine (see

Appendices I and II for general introduction to photonic

neural nets and detail of the Boltzmann Machine). Learning

in this machine is stochastic taking place in a self-

organizing tri-layered optoelectronic neural net with plastic

connectivity weights that are formed in a programmable

nonvolatile spatial light modulator (SLM). The net, which

can also be called a Boltzmann Learning Machine, learns by

adapting its connectivity weights in accordance to

environmental inputs. Learning is driven by error signals

derived from state-vector correlation matrices accumulated at

the end of fast annealing bursts that are induced by

controlled optical injection of noise into the network.

Operation of the machine is made possible by two important

developments in our work: Fast annealing (in approximately

35 time constants of the neurons used) by optically induced

noisy thresholding, and stochastic learning with binary
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weights which enabled using a binary magneto optic SLM to

implement plasticity. Preliminary results obtained with a 24

neuron prototype (8-input, 8-hidden, 8-output neurons) (see

pictorial view in Fig. 1) show that the machine can learn,

with a learning score of about 70%, to associate three 8-bit

vector pairs in 10-60 minutes with relatively slow (60 msec

response time) neurons deliberately used to facilitate

monicoring evolution of the state vector of the net in time

and that shifting to neurons with 1 gsec response time for

example, could reduce the learning time by roughly 104 times.

A subsequent study of methods for improving the learning

score show that drastic improvement to a score better than

95% is possible by increasing the number of hidden neurons

b4

Fig. 1. First fully operational Boltzmann Learning Machine.
Methods are under study for compacting this arrangement into
clusterable photonic neural chips to enable scaling to larger
size nets.
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from 8 to 16. Methods for constructing large-scale photonic

learning machines of 103 -105 neurons that utilize the

concepts developed are under study. It is clear there is an

important role for integrated optoelectronics or photonics in

the implementation of large-scale neural nets with adaptive

learning capability (see Appendix I).

Neuromorphic Radar Target Identification: Past research

at the Electro-Optics and Microwave-Optics Laboratory has led

to inception and development of microwave diversity imaging

where angular, spectral, and polarization degrees of freedom

are combined to form images of complex shaped objects with

near optical resolution. An example of attainable image

quality is shown in Fig. 2. This is a projection image of

0

100 20 60 400 500 60.0
pvceniage of aspect views used in learning

Fig. 2. Microwave diversity Fig. 3. Learning score (percent
image of a complex shaped or probability of correct identi-
object fication) vs. size of training set
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the scattering centers on a test object (a 100:1 scale model

of a B-52). Co-polarized and cross-polarized data sets,. each

consisting of 128 azimuthal looks (broadband echos) at the

target extending from head-on to broad-side (90 degree

angular aperture) and an elevation angle of 30 degrees with

each look covering a (6-17) GHz spectral window were utilized

in obtaining the image shown. Also a novel target derived

reference technique for correcting the frequency response

data for undesirable range-phase (or range-phase time-rate

(Doppler) when the target is moving) together with an image

symmetrization method were painstakingly developed and

perfected before the image quality shown in Fig. 2 could be

obtained. In later discussion we will be referring to range-

profiles of a target. The range-profile at a given target

aspect is taken to be the real part of the Fourier transform

of the frequency response measured for that aspect corrected

for range-phase. For a fixed spectral window and signal-to-

noise ratio, the range-profile is independent of range and

varies only with aspect.

Application of concepts and methodologies developed and

demonstrated in the above research in practice would entail

either: (a) use of large, albeit sparse, recording imaging

apertures to furnish the angular diversity needed, or (b)

use of a single radar system that can track and interrogate a

target, in the presence of relative motion, from different

aspect angles in time to furnish the required angular

diversity in an inverse synthetic aperture radar (ISAR) or
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spot-light imaging mode. The first approach is prohibitively

costly specially when the target is remote and the angular

aperture needed to achieve useful resolution is large. The

second approach is non-real-time in nature as it requires

observing -he target over extended time intervals, and this

may not be acceptable in numerous applications, in order to

synthesize the required angular aperture. One is therefore

constrained in practice to limited angular apertures or

limited observation times and is thus faced with the

longstanding problem of image formation from limited and

often sketchy (partial and noisy) infcrmation, i.e., one is

faced with the classical problem of super resolution which

has evaded a general solution for a long time. In other

words, the problem is to recognize the target from a few

looks.

Among its many fascinating capabilities such as

robustness and fault tolerance, the brain is also able to

recognize objects from partial information. We can recognize

a partially obscured or shadowed face of an acquaintance or a

mutilated photograph of an acquaintance with relative ease.

The brain has a knack for supplementing missing information,

based on previously formed and stored associations.

During the period of this report we studied and

demonstrated a new concept for automated, distortion

invariant (i.e. independent of aspect, range, or location

within the field of view), radar target identification from a

single "look" (coherent broad-band echo) based on neural net
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models and learning. We have explored using a three layered

neural net of analog valued neurons with 101 neurons in the

first (input) layer, 101 analog neurons in the hidden layer

and 2 binary neurons in the third or output (label) layer (to

represent three scale models of aerospace targets: space

shuttle, Boeing 747 and B-52) and an error driven learning

(weights modification) algorithm (error back-propagation

(EBP) algorithm). We find (see Appendix III for detail) this

net can learn the normalized frequency responses (6-17 GHz

window in 101 points) of the target collected for each target

in 100 aspect angles ranging in azimuth over 200 extending

from head-on towards broadside in such a manner as to be able

to classify correctly any one of the frequency responses

presented to it by associating it with the correct label.

When a two out of three outcomes majority vote is used to

designate correct recognition, the learning score is found to

be perfect when 35% of the 100 frequency responses of each

target are used as the training set (see Fig. 3).

Cognitive Networks: Our research in cognitive networks

stemmed directly from the work described in the preceeding

section. In that work we find we can make a layered error

backpropagation network learn the broadband radar echos

(range-profiles) of three test targets (scale models of B-52,

Boeing 747, and Space shuttle). The resulting network, which

we call adaptive associator network, can generalize very well
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and classify the three targets perfectly by triggering one of

three associated identifying labels. The classification is

robust. It is also distortion invariant, in that the three

targets can be identified from a single echos (three echos

with majority vote) irrespective of range (scale),

orientation, or location within the field of view. (see Fig.

3). The process of learning in this network entails

essentially a partitioning of the phase space of the network

into three regions each with a fixed point attractor

representing one of the three targets. Despite this

impressive capability, the network is not cognitive. This

means, when presented with echos belonging to a fourth

unlearned target, the network responds naively by classifying

it as one of the three targets it knows and it is not

capable, on its own of indicating that the input is novel.

Novelty filters involving front end auxiliary gear which

measures other attributes of targets such as size, speed,

altitute etc. are frequently proposed as a means for

providing additional information that can be used to

independently determine whether the target is novel or not

before the classification network outcome is considered.

Then if the target is novel, the network decision is ignored

and if it is not, the classification made by the network is

considered meaningful. Obviously the use of novelty filters

of this kind is artificial and somewhat contrived.

Biological neural networks may use multisensory information
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and data fusion to determine novelty or familiarity*, but

there is appreciable evidence that they are also endowed with

fundamental cognitive abilities which we believe are inherent

to the nonlinear dynamical nature of neural structures in the

cortex and to the fact these dynamical structures, like all

other nonlinear dynamical systems, compute with three types

of attractors: fixed (limit point-), periodic (limit cycle),

and chaotic and that bifurcation between these types of

attractors may play a role in cognition, as our preliminary

findings suggest. Bifurcation may also be important in

hierarchial processing and in higher order functions produced

by these structures. It is intriguing to consider that a

chaotic attractor is an information machine, in the sense

that one can not predict the next state of a chaotic network

given its present state, and that bifurcation between chaotic

and periodic attractors has been observed in the olfactory

cortex of the rabbit and proposed as a possible mechanism for

odor identification (1].

Networks that bifurcate under the influence of

environmental input between chaotic and periodic attractors

may be endowed with richer behavior than those

bifurcating between periodic and fixed point attractors.

Their numerical simulation and study is however more involved

than that for periodic attractor networks. Our study of

* Most probably multisensory information is being used for

some sort of supervised learning.
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cognitive networks and their application is therefore

focusing initially on the easier case of periodic/fixed point

attractor networks. The insight and experience gained with

these networks will then be applied to the study of chaotic

networks. The ultimate aim of this research is to devise

methods for controlling the phase-space behavior of

neurodynamical systems (phase-space Engineering) and to

demonstrate the power of cognitive networks in pattern

recognition in general and in ATR in particular (see Appendix

IV). The ATR problem is what we consider a "convincing

application" for neural networks. We know that the problem

of target identification from a single broadband echo has so

far resisted solution by conventional means. Demonstrating

that a learning cognitive network can be successfully used

for robust automated target recognition will be an important

achievement. It is a challenging task which will help

establish the viability of neurocomputing in an objective

manner. Another reason for selecting the ATR problem as test

bed for research in cognitive networks is the extensive

experience and measurement facilities we have accumulated in

this area which allows us to work with realistic

electromagnetic scattering data representing scale models of

actual targets of interest.

A future goal in this aspect of our research is

therefore to incorporate cognition in neurodynamical system

through synchronicity in cognitive dynamical bifurc ng

networks that compute with diverse attractors cowb ch
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clustering networks that can handle multisensory .nformation

and compute with fixed point attractors. More specifically

we are starting to investigate the feasibility of clustering

the echos from a given target into M labels which are stored

in one isolated periodic attractor (a closed version of the

string or sequential attractor Jescribed in Appendix IV) of

the cognition network. This would be done for each target

the composite network is required to recognize. The periodic

attractors of the individual targets stored in the cognition

network will be highly isolated and not intersecting and each

will have an imbedded label identifying its target. The use

of multisensory information such as range-profile data

(derived from frequency response data) and polarization

information for example will be studied as means for

resolving if required any errors in the performance of the

clustering network arising from ambiguities between the

range-profiles of different targets.

3. CONCLUSIONS

To realize the potential advantages of neuromorphic

processing, one must contend with the issue of how to carry

out collective neural computation algorithms in real-time at

high speed excceding speeds possible with electronic digital

computers. Obviously parallelism and concurrency are

essential ingredients and one must contend with basic

implementation issues of how to achieve such massive
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connectivity and parallelism and how to achieve artificial

plascicity, i.e. adaptive modification o. the strength of

interconnections (synaptic weights) between neurons which is

required for implementing memory and learning (self-

programming).

The answers to these questions seem to be coming from

two directions of research. One is connection machines in

which a large number of digital central processing units are

interconnected to produce parallel computations in VLSI

hardware, the other is analog hardware where a large number

of simple processing units (neurons) are connected through

modifiable weights such that their phase-space dynamics has

associated with it useful signal processing functions. The

concurrent digital processing approach provides flexibility

but has to contend with the communication overhead between

individual processors which appears to limit presently the

number of modifiable connections per second in simulated

networks to 106 or 107 . No such communication overhead is

associated with the fine grain neural approach where the

processing elements carry out a simple operation.

Analog photonic hardware implementations of neural nets

[2],[3], since first introduuc. ±n 1985, have attracted

considerable attention of the optical processing community

for several reasons. Primary among these is that the

photonic approach combines the best of two worlds: the

massive interconnectivity and parallelism of optics and the

versatility, high gain, and decision making capability

13



(nonlinearity) offered by electronics. Ultimately it would

seem more attractive to form very large analog neural

hardware by completely optical means where switching of

signals from optical to electronic carriers and visa versa is

avoided. However, in the absence of fully optical decision

making devices with versatility comparable to that offered by

optoelectronic amplifiers, the capabilities of the photonic

approach remain quite attractive and could in fact remain

competitive with other approaches when one considers the

flexibility of architectures possible with it and its

potential for realizing more biomorphic and complex neurons

of the type needed for neurodynamical spatio-temporal

networks as will be explained below.

The photonic approach is based on dividing machine

functions into two parts. One 's a programmable optically

interrogatable synaptic plane (connectivity mask) for storing

the values of connectivity weights between the active

elements (neurons) of the system. The weights would be down-

loaded from a computer controller via either electronic

interface or cptical interface to the mask. The connectivity

mask would be completely reconfigurable and would furnish

therefore not only programmable weights, but also alterable

topology or architecture. Thus any number of layers with

teedforward and/or feedback would be possible. The ability

to dynamically change the topology of the network is

important for the study of new learning algorithms that call

for adaptive topology as potential means for overcoming N-P

14



completeness of learning. The second part of the machine

consists of an array of programmable analog amplifiers that

furnish the required nonlinear neuron response. This is

basically the approach adopted in the Boltzmann learning

machine described in this report.

The parallel optical readout of the synaptic plane is

the one distinction of this photonic approach as compared Lu

an entirely electronic LSI or VLSI implementation where all

operations must be carried out serially. Although the

weights both in the photonic approach may be loaded serially,

computing both the activation potentials ui = WijS j and the.

state update are done in parallel optoelectronically at

considerable advantage in iteration speed over purely

electronic systems.

Progress in amorphous silicon liquid crystal spatial

light modulators (a:s i LCSLMs) is providing sensitive

optically addressable nonvolatile devices of (3x3)cm2 active

area with better than 100 Xp/mm resolution, .03 pJ addressing

energy per pixel and a speed of over 103 frames/sec. [4].

Moreover the device is nonvolatile. These mean that such a

device can furnish ~1010 modifiable synaptic weights per

second provided that an optical means for downloading these

weights from a computer controller into the device via a CRT

display at the high rate of 10 G bits/sec is found. Wide-

band microchannel-plate assisted CRTs of the variety used by

Tecktronix in their GHz bandwidth oscilloscopes or multiple

electron beam CRTs can be considered for this task.

15



Pixelized a:s i LCSLM are also under construction with similar

resolution but smaller number of pixels, e.g. 128x128 pixels

at present with 256x256 and larger arrays being under

development [5). These arrays are addressed electronically

and act as an optically interrogatable static RAM.

The above line of reasoning moves us to conclude that as

the development of spatial light modulators proceeds towards

larger sizes and faster frame rate devices that are

nonvolatile and '. 4-5 bits of pixel dynamic range, the

photonic approach to constructing versatile neurocomputers

can offer distinct advantages over the purely electronic

approach.

Finally our work in neuromorphic target identification

indicates that greater attention should be given to the issue

of cognition in neural networks. Our preliminary findings

indicate that networks which compute with periodic

attractors, instead of fixed point attractors, have

interesting capabilities and that studying bifurcating

networks may offer a possible mechanism for cognition.
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Appendix I

Optoelectronic Neural Networks and
Learning Machines

Nabil H. Farhat

Foreword is distributed, nonlinear and iterative. Therefore they are
best described in terms of phase-space behavior where one

Circuits and Devices Magazine is featuring three sequen- can draw upon a rich background of theoretical results de-
tial articles on the current status of artificial neural network veloped in the field of nonlinear dyn.rnical systems. The
implementation technol- ultimate purpose of biological neural nets (BNNs) is to sus-
ogy. The current offering, tain and enhance survivability of the organism they reside
on optronic implementa- in, doing so in an imprecise and usually very complex en.
tion of artificial neural net- vironment where sensory impres..ions are at be.t sketch
works, is the second entry and difficult to make sense of had they been treated and
in this trilogy. It is sand- analyzed by conventional means. Embedding artificial neurai
wiched between the pre- nets (ANls) in man-made systems endows them theretore
vious overview on analog • " with enhanced survivability through fault-tolerance, ro-
implementation and the ___ bustness and speed. Furthermore, survivability implies
upcoming surveyofdigital adaptability through self-organization, knowledge accu-
artificial neural networks.. \ ;. mulation and learning. It also implies lethality.

Nabil H. Farhat, who " :All of these are concepts found at play in a wide range

penned this overview, is a - of disciplines such as economics, social science, and even
co-author of the 1985 arti- military science which can perhaps explain the widespread
cle in Optics Letters and interest in neural nets exhibited today from both intellec-
follow-up paper in Applied Optics that broke ground for tual and technological viewpoints. It is widely believed that
modern optical implementation of artificial neural net- artificial neurocomputing and knowledge processing sys-
works. tems could eventually have significant impact on infor-

mation processing, pattern recognition, and control.
Robert 1. Marks II However, to realize the potential advantages of neuro-

morphic processing, one must contend with the issue of
how to carry out collective neural computation algorithms

Abstract at speeds far beyond those possible with digital computing.
Obviously parallelism and concurrency are essential-ingre-

Optics qffers advantages in realizing the parallelism, massity iitet'oi- dients and one must contend with basic implementation
nectivity, and plasticity required in the design and construction of large. issues of how to achieve such massive connectivity and
scale optoclectromc (photonic) neiroconiputers that solVe optinization parallelism and how to achieve artificial plasticity, i.e.,
problems at potentially very high speeds liv learning to perform inappings
and associaticas. To enicidatc these adwntages, a briet neural net primer adaptive modification of the strength of interconnections
based on phase-space aid energy landscape considerations is first pre- (synaptic weights) between neurons that is needed for
sented. This provides the basis for subsequent discussion ot optoelectronc memory and self-programming (self-organization and
architectures and inplementations u'ith self-orgamnzato and learning ability learning). The answers to these questions seem to be com-
that are configured around an optical crossbar interconnect. Stochastic ing from two directions of research. One is connection ma-
learnin, in the context of a Boltzinann machine is then descrild to tus. chines in which a large number of digital central processing
Irate the flexibility of optoelectranics in pertorninkg tasks that may le units are interconnected to perform parallel computations
difficult for electronics alone. Stochastic nets are stuied to gain nsitht in VLSI hardware; the other is analog hardware where a
into the possible role of noise in biological neural nels. We close b1y de- large number of simple processing units (neurons) are con-
scribing two approaches to realizing large-scale optoclectroic neurocon. nected through modifiable weights such that their phase-
puters: integrated optoclectronic neural chips with inlcrchip optical
iintercomnects that enables their clustering into large neural netwvorks, aid space dynamic behavior has useful signal processing func-
nets uwith two.diinenisional rather than oiie-iintensioial arrangement of tions associated with it.
neurois and Jourdimnensioial connectiiiti niatrices tor increased packing Analog optoelectronic hardware implementation of neural
density and coinpatibility utith tu'o-idtiiensiinal data. We foresee rote. nets (see Farhat et al. in list of further reading), since first
grated opt('lectronics or photoaics playing an increask- roje in the coil. introduced in 1985, has been the focus of attention for sev-
struction oj a neu' generation ot versattle prograiiiialile iialog computers eral reasons. Primary among these is that the optoelectronic
that perform computations collectively Jor use in neuronorphic (bran. or photonic approach combines the best of two worlds: the
like) and f smulati:: and study of coinple ' n.ar dy- massive intcrconnctivity and paral!elism of optks and- the
namical systems. flexibility, high gain, and decision making capability (non-

linearity) offered by electronics. Ultimately, it seems more
attractive to form analog neural hardware by completely

Introduction optical means where switching of signals from optical to
electronic carriers and vice versa is avoided. However, in

Neural net models and their analogs offer a brain-like the absence of suitable fully optical decision making devices
approach to information processing and representation that (e.g., sensitive optical bistability devices), the capabilities

32 S'-399689/0900.0032$s.00 0 199 IEEE IEEa CIRCUITS AND DEVICES MAGAZINE
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of the optoelectronic approach remain quite attractive and and below. Thus the state of the i-th neuron in the net can
could in fact remain competitive with other approaches when be described mathematically by
one considers the flexibility of architectures possible with
it.' In this pacer we concentrate therefore on the optoelec- s, = f{u1} i = , 2, 3...N °  (1)
tronic approach and give selected examples of possible ar-
chitectures, methodologies and capabilities aimed at where f{.} is a sigmoidal function and

Nproviding an apprediation of its potential in building a new u, = 'Wsj - 0, + I, (2)
generation of programmable analog computers suitable for
the study of non-linear dynamical systems and the imple-
mentation of mappings, associative memory, learning, and is the activation potential of th ith neurio, W, is the
optimization functions at potentially very high speed. strength or wenght of the synaptic interconnection betweenWe begin with a brief neural net primer that emphasizes the j-th neuron and the i-th neuron, and .W,=0(i.e., neu-

p ese desipt biof nur neth fcsaen the roe rons do not talk to themselves). 0, and I, are, respectively,phase-space description, then focus attention on the role the threshold level and external or control input to the i-th
of optoelectronics in achieving massive interconnectivity te th s l evl n te input to e i-th
and plasticity. Architectures, methodologies, and suitable neuron, thus Wfi, represents the input to neuron i fromtecholoiesfor ealzin opoeletroic eura nes bsed neuron j and the first term on the right side of (2) represents
technologies for realizing optoelectronic neural nets based the sum of all such inputs to the i-th neuron. For excitatoryon optical crossbar (matrix vector multiplier) configuratons interconnections or synapses, W, is positive, and it is neg-for associative memory function are then discussed. Next, ative for inhibitory ones. For a binary neural net, that is,
partitioning an optoelectronic analog of a neural net into o inhibtor ons a binary eua et, th s ,
distinct layers with a prescribed interconnectivity pattern one in which the nurons are binary, i.e:, s(0,1, the smoothly
as a prerequisite for self-organization and learning is dis- varying function f(.) is replaced by U(.1, where U is the unit
cussed. Here the emphasis will be on stochastic learning step function. When W,, is symmetric, i.e., WI=W, one
by simulated annealing in a Boltzmann machine. Stochastic can define (see J. J. Hopfield's article in list of furthtr read-
learning is of interest because of its relevance to the role of ing) a Hamiltonian or energy function E for the net by
noise in biological neural nets and because it provides an !
example of a task that demonstrates the versatility of optics. E = - u's,
We close by describing several approaches to realizing the

large-scale networks that would be required in analog so- Wsis(
lution of practicaI problems. 2 2

The energy is thus determined by the connectivity matrix
Neural Nets-A Brief Overviev. W, the threshold level- 0, and the external input I. For

symmetric W,, the net is stable; that is, for any threshold
level 0, and given "strobed" (momentarily applied) inputIn this section, a brief qualitative description of neural I,, the energy of the net will be a decreasing function of the

net properties is given. The emphasis is on energy land- neurons state s, of the net or a constant. This means thatscape and phase-space representations and behavior. The the net always -heads to a steady state of local or global
descriptive approach adopted is judged best as background energy minimum. The-descent to an energy minimum takes
for appreciating the material in subsequent sections with- place by the iterative discrete dynamical process described
out having to get involved in elaborate mathematical ex- by Eqs. (1) and (2) regardless of whether the state update
position. All neural net properties described here are well of the neurons is synchronous or asynchronous. The min-
known and can easily be found in the literature. The view- imum can be local or global, as the "energy landscape" of
point of relating all neural net properties to energy land- a net (a visualization of E for every state s,) is not monotonic
scape and phase-space behavior is also important and useful but will possess many uneven hills and troughs, and is
in their classification, therefore characterized by many local minima of various

A neural net of N neurons has (N"-N) interconnections depths and one global (deepest) minimum. The energy
or (N2-N)/2 symmetric interconnections, assuming that a landscape can therefore be modified in accordance with Eq.
neuron does not communicate with itself. The state of a (3) by changing the interconnection weights W,1 and/or the
neuron in the net, i.e., its firing rate, can be taken to be threshold levels 0, and/or the external input It. This ability
binary (0, 1) (on-off, firing or not firing) or smoothly vary- to "sculpt" the energy landscape of the net provides for
ing according to a nonlinear continuous monotonic func- almost all the rich and fascinating behavior of neural nets
tion often taken as a sigmoidal function bounded from above and for the ongoing efforts of harnessing these properties

to perform sophisticated spatio-temporai mappings, com-
putations, and control functions. Recipes exist that show*It is worth mentioning here that recent rcsults obtained in our how to compute the Wt matrix to make-the local energy

work show that networks of logistic neurons, whose response re- minima correspond- to specific desired- states of the net-
sembles that of the derivative of a sigmoidal function, exhibit rich work. As the energy minima are stable states, the net tends
and interesting dynamics, including spurious state-free associative to settle in one of them, depending on the initializing state,
recall, and allow the use of unipolar synaptic weights. The net- when strobed by a given input. For example, a binary net
works can be realized in a large number of neurons when imple. of N = 3 neurons will have.a total of 2N = 8 states. These are
m.nted with optically addressed reflection.type liquid crystal spatial
light modulators. However, the flexibility of such an approach listed in Table 1. They represent all possible combinations
versus that of the photonic approach is yet to be determined. st, s2 and s, of the three neurons that describe the state

"From here on it will be taken as understood that whenever the vector s = (s,svs.] -of the net. For a net of N neurons the
subscripts (I or J) appear, they run from I up to N where N is thL state vector is N-dimensional. For N =3 the state vector can
number of neurons in the net. be represented- zs a point (tip of a position vector) in 3-D
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time when the net is iterated from an arbitrary initial state.

, ,' "TAT" Such stable points are called "attractors" or "limit points •

-.5. "',.- SITA _ _ of the net, to borrow from terms used in the description ot
nonlinear dynamical systems. Attractors in phase-space are

""- characterized by basins of attraction of given size and shape.
Initializing the net from a state falling within the basin ot

.I. attraction of a given attractor and thus regarded as in in-
*. -complete or noisy version of the attractor, leads to a tra-
-. :, , .jectory that converges to that attractor. This is a many to

(b, .,....VA,-.0.N..,O.....e ...:,.one mapping or an associative search operation that leads
W.INNARY NEURONS sg(0.11- ""b") MULTIVALU.V NEURONS s, 46[0, 11

(NEURONS WITH SMOOTH to an associative memory attribute of neural nets.
"" 4 STATES LYING ON V'IEII RESPONSE) Lccal minima in an energy landscape or attractors in phase." OF UNfT CUIK IN . NUM UI J OF

NEURONS LMSTATES LYING WrrHIN UNIT CUBE space can be fixed by forming W,, in accordance with the

S PSACE LEVL IN NUMBER OF OISRNUISHALE Hebbian learning rule (see both Hebb and Hopfield in lit
TRAJECTORS NUMBR OF NNURON) of further reading), i.e., by taking the sum of the outer

ScoFMNUOUS PHASE-SPACE products of the bipolar versions of the state vector we wishTRAJEtCTORY€ FALLING ANYcWHERE

. DsE UNIT CUB to store in the net
"" ""W ., = ! ni v i n l (4)

Fig. I Phase-space or state space representation and trajectories for a " - I

neural net of N = 3 neurons. (a) for binary neurons, (b) for neurons wth where
normialized smooth (sigmoidal) response.

space. The eight state vcctors listed in Table I fall then on -... . .

the vertices of a unit cube as illustrated in Fig. 1(a). As the -"" ....3V' ..

not changes its state, the tip of the state vector jumps from ',;. . . , , GY
vt.rtex to vertex describing a discrete trajectory as depicted :;z :':;,.- -" *•. -- .ANDS,:-E

by the broken trajectory starting from the tip of the initial- "-SIANOSCAP
izing state vector s, and ending at the tip of the final state LOCAL
vector s,. For any symmetric connectivity matrix assumed
for the three-neuron net example, each of the eight states MINIMA L MINIMUM
in Table I yields a value of the energy E. A listing of these G.A'- INIM'U
values for each state represents the energy landscape of the
net. Fig. 2 Conceptual representation of energy landscape.

For a nonbinary neural net whose neurons have nor-
malized sigmoidal response s,[0,1),i.e., s, varies smoothly
between zero and one, the phase-space trajectory is con-
tinuous and is always contained within the unit cube as vi('"O = 2s!"1 - 1 i = 1,2. ..N m = 1,2. ..M (5)

illustrated in Fig. l(b). The neural net is governed then by
a set of continuous differential equations rather than the ar?-M bipolar binary N-vectors we wish to store in the net.
discrete update relations of Eqs. (1) and (2). Thus one can Provided that s,"' are uncorrelated and
talk of nets with either discrete or continuous dynamics. N

The above phase-space representation is extendable to a M < N- (6)
neural net of N neurons where one considers discrete tra. 4enN

jectories between the vertices of a unit hypercube in N- the M stored state sln will become attractors in phase-space
dimensional space or a smooth trajectory confined within of-the net or equivalently their associated energies will be

the unit hypercube for discrete and contnuous neural nets, local minima in the energy landscape of the net as illus-

respectively. trated conceptually in Fig. 2. As M increases beyond the
The stable states of the net, described before as minima value given by (6), the memory is overloaded, spurious

of the energy landscape, correspond to points in the phase- local minima are created in addition to the desired ones
space towards which the state of the net tends to evolve in and the probability of correct recall from partial or noisy

information deteriorates, compromising operation of the

Table I. Possible States of a Binary Neural Net of 3 Neu- net as an associative memory (see R.J. McEliece et al. in

rons list of further reading).
The-net can also be formed in such a way as-to-lead to a

s, S2 S3 hetero-associative storage and recall function by setting the

0 0 0 interconnection weights in accordance with

0 0 1 W
1 1

= vmig(,) (7)
1 1 0 M

0 0 0 where vt"" and 91m) are associated N-vectors. Networks of

1 0 1 this variety can be used as feedforward networks only and

1 1 0 this precludes the rich dynamics encountered in feedback
1 1or recurrent networks from being observed. Nevertheless,

they are useful for simple mapping and representation.
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Energy landscape considerations are useful in devising
formulas for the storage of sequences of associations or a
cyclic sequence of associations as would be required for
condlucting sequential or cyclic searches of memories.

Learning in biological neural nets is thought to occur by
self-organization where the synaptic weights are modified 1
electrochemically as a result of environmental (sensory and
other (e.g., contextual)) inputs. All such learning requires "E wlli-'ii
plasticity, the process of gradual synaptic modification. ' -.- i

Adaptive learning algorithms can be deterministic or sto-
chastic; supervised or unsupervised. An optoelectronic P

(Boltzmann machine) and its learning pertormance will be
described in the section on large scale networks as an il- NOISY
lustration of the unique capabilities of optoelectronic hard- THAMW INKT

ware.

Neural Nets Classification and Useful
Functions

The energy function and energy landscape description" --

of the behavior of neural netwcrks presented in the pre-
ceding sections allows their classification into three groups. Fir. 3 Oploelectronic analog circuit ofa fully interconnected neural net.
For one group the local minima in the energy landscape
are what counts in the network's operation. In the second
group the local minima are not utilized and only the global often occurs in combinatorial optimization problems and in
minimum is meaningful. In the third group the operations the solution of inverse problems encountered, for example,
involved do not rcquire energy considerations. They are in vision, remote sensing, and control.
merely used for mapping and reduction of dimensionality. in viin r o se gan ntrol
The first group includes Hopfield-type nets for all types of The third group of neural nets is multilayered with lo-associative memory applications that include auto-associ- calized nonglobal connections similar to those in cellular

assoiatve emoy apliatins tat nclde utoassci- automata where each neuron communicates within its layer
ative, hetero-associative, sequential and cyclic data storage a at ere ec neuron commnicateshwithin it a
and recall. This category also includes all self-organizing with a pattern of neurons in its neighborhood and with a
and learning networks regardless of whether the learning pattern of neurons in the next adjacent layer. Multilayered
in them is supervised, unsupervised, deterministic, or sto-
chastic as the ultimate result of the fact that learning, whether ping and feature extraction. Neuralnets can also be cate-

hard or soft, can be interpreted as shaping the energy land- gorized by whether they are single layered or multilayered,
scape of the net so as to "dig" in it valleys corresponding self-organizing or nonself-organizing, solely feedforward

to learned states of the network. All nets in this category or involve feedback, stochastic or deterministic. However,

are capable of generalization. An input that was not learned the most general categorization appears to be in terms of

specifically but is within a prescribed Hamming distance' the way the energy landscape is utilized, or in terms of the
to one of the entities learned would elicit, in the absence kind of attractors formed and utilized in its phase-space
of any contradictory inforination, an output that is close to
the outputs evoked when the learned entity is applied to
the net. Because of the multilayered and partially intercon-
nected nature of self-organizing networks, one can define Implementations
input and output groups of neurons that can be of unequal
number (See section on large scale networks). This is in The earliest optoelectronic neurocomputer was of the fully
contrast to Hopfield-type nets which are fully intercon- interconnected variety where all neurons could talk to each
nected and therefore the number of input and output neu- other. It made use of incoherent light to avoid interference
rons is the same (the same neurons define the initial and effects and speckle noise and also relax the stringent align-
final states of the net). The ability to define input and out- ment required in coherent light systems. An optical cross-
put groups of neurons in multilayered nets enables addi- bar interconnect (see Fig. 3) was employed to carry out the
tional capabilities that include learning, coding, mapping, vector matrix multiplication operation required in the sum-
and reduction of dimensionality. r'-tion term in Eq. 2. (see Farhat et al. (1985) in list of

The second group of neural nets includes nets that per- fu ir reading). In this arrangement the state vector of the
form calculations that require finding the global energy n. . represented by the linear light emitting array (LEA)
minimum of the net. The need for this type of calculation or equivalently by a linear array of light modulating ele-

ments of a spatial light modulator (SLM), the connectivity

'The Hamming distance between two binary N-vectors is the matrix Wil is implemented in a photographic transparency

number of elements in which they differ. mask (or a 2-D SLM when a modifiable connectivity mask
"A chaotic attractor is manifested by a phase-space trajectory is needed for adaptive learning), and the activation poten-

that is completely unpredictable and is highly sensitive to initial tial ui is measured with a photodiode array (PDA). Light
conditions. It could ultimately turn out to play a role in cognition. from the LEA is smeared vertically onto the W,1 mask with
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....... .in list of further reading). Fig. 3 also shows a third LEA for
V1 -•injection of spatio-temporal noise into the net as would be

A ,required, for example, in the implementation of a noisy
threshold scheme for the Boltzmann learning machine to

LED V2be discussed later. The net of Fig. 3 behaved as an associ-
ative memory very much as expected and was found o
exhibit correct recovery of three neurons stored from partial
information and showed robustness with element failure

Wli  .(two of its 32 neurons were accidentally disabled, 2 PDA
RU-OO INTERCCNINEC-#  elements broke, and no noticeable degradation in perform-

LED. TIVITY, MAance was observed).
In the arrangement of Fig. 3, the neurons are fully inter-

connected. To implement learning in a neural net, one needs
COMPUTR to impart structure to the net, i.e., be able to partition the
COTROLLER net into distinct input, output, and hidden groups or layers

of neurons with a prescribed pattern of communication or
interconnections between them which is not possible in a

Co ) fully interconnected or single layer network. A simple but
effective way of partitioning a fully interconnected opto-
electronic net into several layers to form a partially inter-
connected net is shown in Fig. 4(a). This is done simply by
blocking certain portions of the W, matrix.

In the example shown, the blocked submatrices ,serve t,
prevent neurons from the input group V, and the output
group V, from talking to each other directly. They can do
so only via the hidden or buffer group of neurons H. Fur.
thermore, neurons within H can not talk to each other. This
partition scheme enables arbitrary division of neurons among
layers and can be rapidly set when a programmable non-
volatile SLM under computer control is used to implement
the connectivity weights. Neurons in the input and output
groups are called visible neurons because they interlace
with the environment.

The architecture 6f Fig. 4 can be used in supervised learn-
(b) ing where, beginning from an arbitrary W,, the-net is pre-

sented with an input vector from the training set of vectors
Fig. 4 Boltzmann learning machine. (a) optodectronic circuit diagram it is required to learn through V, and its convergen't output
of a. net partitioned into three layers by blocking segments of the intercon- state is observed on V, and compared with -the desired
nectivity mask, (b) hardwvare implementation showing the state vector output (association) to produce an error signal which is
LED array at the top right, the MOSLM at the center (between lenss) used in turn according to a prescribed formula to update
and an inten.spJid PDA (PDA abutted to ani imtage itenslerhtber output the weights matrix. This process of error-driven adaptive
window Jr addedgain) in the louwer hit. The integrated circmit )ard rack weights modification is repeated a-sufficient number of times
contains the MOSLM drivr and computer interface and the TV receiver for each vector and all vectors of the training set until in-
in the background provides the "snow pattern" that is imaged through a puts evoke the correct desired output-or association at the
slit onto the intensifier input window for optical injection of noise in the output. At that time the net can be declared as having
network. captured the underlying structure of the environment (the

vectors presented to it) by forming an internal represen-
tation of the rules governing the mappings-of inputs into

the aid of an anamorphic lens system (cylindrical and the required output associations.
spherical lenses in tandem not shown in the figure for sim- Many error-driven learning algorithms have been pro-
plicity). Light passing through rows of W., is focused onto posed and studied. The most widely used, the error back-
the PDA elements by another anamorphic lens system. To projection algorithm (see Werbos, Parker, and Rumelhart
realize bipolar transmission values in incoherent light, pos- et al. in list of further reading), is suited for use in feed
itive elements and negative elements of any row of W l are forward multilayered nets that are void of feedback be-
assigned to two separate subrows of the mask and light tween the neurons. The architecture-of Fig. 4(a) has been
passing through each subrow is focused onto adjacent pairs successfully employed in the initial demonstration of su-
of photosites of the PDA whcse outputs are subtracted. In pervised stochastic learning by simulated annealing. Our
Fig. 3, both the neuron threshold 0, and external input I, interest in stochastic learning stemmed from a desire to
are injected optically with the aid of a pair of LEAs whose better understand the possible role of noise in BNNs and
light is focused on the PDA. Note that positive valued 1, is to find means for accelerating the simulated annealing
assumed here and therefore its LEA elements are shown process through the use of optics-and optoelectronic hard-
positioned to focus onto positive photosites of the PDA ware. For any input-output association clamped on V, and
only. V, and beginning from an arbitrary Wl that could be ran-

This architecture was successfully employed in the first dom, the net is annealed through the hidden neurons by
implementation of a 32 neuron net (sce Farhat et al. (1985) subjecting them to optically injected noise in the form of a
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noise component added to the threshold values of the neu- vergent state vectors of the net, and computes and executes
rons as depicted by 0, in Fig. 3. the weights modification. For reasons related to the.ther-

The source of controlled noise used in this implementa- modynamical and statistical mechanical interpretation of its
tion was realized by imaging a slice of the familiar "snow operation, the architecture in Fig. 4(a) is called a Boltzmann
pattern" displayed on an empty channel of a television learning machine. A pictorial view of an optoelectronic
receiver, whose brightness could be varied under c,mputer (photonic) hardware implementation of a fully operational
control, onto the PD array of Fig. 4(a). This produces con- Boltzmann learning machine is shown in Fig. 4(b). This
trolled perturbation or "shaking" of the energy landscape machine was built around a ,!OSLM as the adaptive weights
of the net which prevents its getting trapped into a stake mask.
of local energy minimum during iteration and guarantees The interconnection matrix update during learning re-
its reaching and staying in the state of the global energy quires small analog modifications AW,1 in W,, Pixel trans-
minimum or one close to it. This requires that the injected mittance in the MOSLM is binary, however. Therefore a
noise intensity be reduced gradually, reaching zero when scheme for learning with binary weights .was developed
the state of global energy minimum is reached to ensure and used in which W,, is made 1 if (P, -P',,)> M regardless
that the net will stay in that state. Gradual reduction of of its preceeding value, where M is a constant, and made
noise intensity during this process is equivalent to reducing - 1 if (P, - P',) < - M regardless of its preceeding value,
the "temperature" of the net and is analogous to the an- and is left unchanged if -M>(P,,-P'.,)_M. This intro-
nealing of a crystal melt to arnve at a good crystalline struc- duces inertia to weights modification and was found to
ture. It has accordingly been called simulated annealing by allow a net of N = 24 neuron partitioned into 8-8-8 groups
early workers in the field. to learn two autoassociations with 95 percent score (prob-

Finding the global minimum of a "cost" or energy func- ability of correct recall) when the value of M was chosen
tion is a basic operation encountered in the solution of op- randomly between (0-.5) for each learning cycle. This score
timization problems and is found not only in stochastic dropped to 70 percent in learning three autoassociations.
learning. Mapping optimization problems into stochastic However, increasing the number of hidden neurons from
nets of this type, combined with fast annealing to find the 8 to 16 was found to yield perfect learning (100 percent
state of global "cost function" minimum, could be a pow- score).
erful tool for their solution. The net behaves then as a sto- Scores were collected after 100 learning cycles by com-
chastic dynamical analog computer. In the case considered puting probabilities ot correct recall of the training set. Fast
here, however, optimization through simulated annealing annealing by the noisy thresholding scheme was found to
is utilized to obtain and list the convergent states at the scale well with size of the net, establishing the viability of
end of annealing bursts when the training set of vectors constructing larger optoelectronic learning machines. In the
(the desired associations) are clamped to V, and V. This following section two schemes for realizing large-scale nets
yields a table or listing of convergent state vectors from are briefly described. One obvious approach discussed is
which a probability Pq of finding the i-th neuron and the j- the clustering of neural modules or chips. This approach
th neuron on at the same time is computed. This completes requires that neurons in different modules be able to com-
the first phase of learning. The second phase of learning municate with each other in parallel, if fast simulated an-
involves clamping the V, neurons only and annealing the nealing by noisy thresholding is to be carried out. This
net through H and V., obtaining thereby another list of requirement appears to limit the number of neurons per
convergent state vectors at the end of annealing bursts and module to the number of interconnects that can be made
calculating another probability P',, of finding the i-th and j- from it to other modules. This is a thorny issue in VLSI
th neurons on at the same time. The connectivity matrix, implementation of cascadeable neural chips (see Alspector
implemented in a programmable magneto-optic SLM and Allen in list of further reading). It provides a strong
(MOSLM), is modified then by AW,1 = f(P, - P'J) computed argument in favor of optoelectronic neural modules that
by the compuier controller where e is a constant controlling have no such limitation because communication between
the learning rate. This completes one learning cycle or ep- modules is carried out by optical means and not by wire.
isode. The above process is repeated again and again until
the W1j stabilizes and captures hopefully the underlying
structure of the training set. Many learning cycles are re-
quired and the learning process can be time-consuming Large Scale Networks
unless the annealing process is sufficiently fast.

We have found that the noisy thresholding scheme leads To date most optoelectronic implementations of neural
the net to anneal and find the global energy minimum or networks have been prototype units limited to few tens or
one clobe to iR in about 35 time constants of the neurons hundreds of neurons. Use of neurocomputers in practicai
used. For microsecond neurons this could be IW'-10 times applications involving fast learning or solution of optimi-
faster than numerical simulation of stochastic learning by zation problems requires !arger nets. An important issue,
simulated annealing which requires random selection of therefore, is how to construct larger nets with the pro-
neurons one at a time, switching their states, and accepting grammability and flexibility exhibited by the Boltzmann
the change of state in such a way that changes leading to learning machine prototype described. In this section we
an energy decrease are accepted and those leading to en- present two possible approaches to forming large-scale nets
ergy increases are allowed with a certain controlled prob- as examples demonstrating the viability of the photonic
ability. approach. One is based on the concept of a clusterable

The computer controller in Fig. 4 performs several func- integrated optoelectronic neural chip or module that can
tions. It clamps the input/output neurons to the desired be optically interconnected to form a larger net, and the
states during the two phases of learning, controls the an- second is an architecture in which 2-D arrangement of neu-
nealing profile during annealing bursts, monitors the con- rons is utilized, instead of the 1-D arrangement described
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N' ,"I",EAR-concept of clusterable integrated optoelectronics or pho-
. ;t NO'ILEAR tonic neural chips. One is replacement of the LEDs of theREFLECTOR nonlinear reflector arrays by suitable spatial light modula-
ARRAYtars of the fast ferroelectric liquid crystal variety for ex-

W.; ample, and extending the elements of the nonlinear reflector
*. arrays to form stripes that extend beyond the dimensions

-.-. of the connectivity SLM, and sandwiching the latter be-
.-., .. tween two such striped nonlinear reflector arrays oriented

.. W orthogonally to each other as depicted in Fig. 3(c). This
produces a photonic neural chip that operates in an am-
bient light environment. Analog integrated circuit (IC)

NONLINEAR technology would then be used to fabricate channels of
,..REFLECTOR (0) nonlinear (thresholding) amplifiers and SLM drivers, oneARRAY

W MASK channel for each PD element. The minute IC chip thus
fabricated is mounted as an integral part on each PDAISLM

A.-.BROWS "assembly of the nonlinear reflector arrays. Individual chan-
nels of the IC chip are bonded to the PDA and SLM ele-

." /..JOr Wt ments. Two such analog IC chips are needed per neural
.-. - chip. The size of the neural chip is determined by the num-

" o +  ber of pixels in the SLM used.
An example of four such neural chips connected optoe-

"T1 lectronically to form a larger net by clustering is shown in
LED Fig. 5(d). T his is achieved by simply aligning the ends at

LED the stripe PD elements in one chip with the ends of the
DRIVER b stripe SLM elements in the other. It is clear that th hybrid

"• . photonic approach to forming the neural chip would ulti-
mately and preferably be-replaced by an entirely integrated

'.'. :".-='- ,. ,. photonic approach and that neural chips with the slightly
different form shown in Fig. 5(e) can be utilized to form

" "" ,clusters of more than four. Large-scale neural nets pro-
NRA j5duced by clustering integrated photonic neural chips have

•L the advantage of enabling-any partitioning arrangement,
• NRA allowing neurons in.the partitioned net to communicate

with each other in the desired fashion enabling fast an-(c) (d) (e) nealing by noisy thresholding to be carried out, and of

being able to accept both optically injected signals (through
the PDAs) or electronically injected signals (through the

Fig. 5 Optoclectronic neural net enplovins inernal hcti'nck ant tio SLMs) in the nonlinear reflector arrays, facilitating com-
orthogonal nonlinear reflector arrays (NRAs) consistin.. ofchannels of munication with the environment. Such nets are therefore
Pionlinear lhght apiplhfiers (phtodetectors, threshohli.q amtiiers, LEDs capable of both deterministic or stochastic learning. Com-
and LED driters). a) architecture, (it) detal of niask and sinle cleitent puter controlled electronic partitioning and loading and up.
of nonlinear reflector array, (c) and (d) optoclcctronic neural chip concept dating of the connectivity weights in the connectivity SLM
and cluster of four chips, () neural chip forforning clusters of more than (which can be of the magneto-optic variety or the nonvol-
four chips. atile ferroelectric liquid crystal (FeLCSLM) variety) is as-

sumed. This approach to realizing large-scale fully
programmable neural nets is currently being developed in

in earlier sections, in order to increase packing density and our laboratory, and illustrates the potential role integrated
to provide compatibility with 2-D sensory data formats. photonics could play in the design and construction of a

new generation of analog computers intended for use in
Clusterable Photonic Neural Chips neurocomputing and rapid simulation and study of nonlin-ear dynamical systems.

The concept of a clusterable-photonic neural chip, which

is being patented by the University of Penimbyiania, is a- Neural Nets with Two-Dimensional Dploymnent of
rived at by noting that when the connectivity matrix is sym- Neurons
metrical, the architectures we described earlier (see Figs. 3
or 4(a)) can be modified to include internal optical feedback Neural net architectures in which neurons are arranged
and nonlinear "reflection" (optoelectronic detection, am- in a two-dimensional (2-D) format to increase packing den-
plification, thresholding and light emission or modulation) sity and to facilitate handling 2-D formatted data have re-
on both sides of the connectivity mask W or nonvolatile ceived early attention (see Farhat and Psaltis (1987) in list
SLM (e.g., a MOSLM) as depicted in Fig. 5 (see Farhat of further reading). These arrangements involve a 2-D N
(1987) in list of further reading). The nonlinear reflector x N state "vector" or matrix si representing the state of
arrays are basically retro-reflecting optoelectronic or pho- neurons, and a four-dimensional (4-D) connectivity "ma-
tonic light amplifier arrays that receive and retransmit light trix" or tensor Tk, representing the weights of synapses
on the same side facing the MOSLM. between neurons. A scheme for partitioning the 4-D con-

Two further modifications are needed to arrive at the nectivity tensor into an N x N array of submatrices, each
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.... U E K::; -" the lenslet a'ray instead of the optical crossbar arrangement
, F **[e' - used to - "establish connectivity between neurons when they

•'l. .THESH. ; are deployed on a line.
Both plastic molded and glass micro-lenslet arrays can

be fabricated today in 2-D formats. Class micro-lenslet ar-
rays with density of 9 to 25 lenslets/mm- can be made in

. .... large areas using basically photolithographic techniques.
Resolution of up to -50 (p/mm can also be achieved.

.- . -. Ao Therefore, a micro lenslet array of (100 x 100)mm-, for ex-
•. .. . ample, containing easily 10- lenslets could be used to form

~~ SYNAPTIC MASKC.,:.;LD "ARAY. T . (qAr MATRIX .. :',. .'. a net of 10' neurons provided that the required nonlinear
• FEAURE . ".'ARAY%-, -t OVERLAYS PO ARRAY" -LE light amplifiers (photodetector/thresholding amplifier/LED

. '".COMPOSOIR .I"
" ",' -.. .-..- or SLM driver arrav) become available. This is another in-

_ . . stance where integrated optoelectronics technology can play
.-v *, -" a central role. We have built a 8 x 8 neuron version of the

".EW" "." ..... . arrangement in Fig. 6(a) employing a square LED array, a
... -... square plastic lenslet array, and a square PDA, each of

,.. .n which has 8 x 8 elements in which the state update was
N .. computed serially by a computer which sampled the acti-

• .v ation potentials provided by the PDA and furnished the
. MERA ' drive signals to the LED array. The connectivity weights in

-' " -. ' . ..-. this arrangement were stored in a photographic mask which
" ..,was formed with the help of the system itself in the follow-

INPur- - ..- ng manner: Starting from a set of unipolar binary matrices
LEARNINO 0I0SYAPCMASK b,, to be stored in the net, the required 4-D connectivityINITIA IZATIO DISPLAIY onneK" vi

IT r|•. LENS T ( xRTiTIO.E . tensor was obtained by computing the sum of the outer
.. 3,.,' . , : . * ...A - , . .,.-,',... SYANrAY products of the bipolar binary versions v, = 2b, - I. The re-

-F: LGH 
INTEGRNG suiting connectivity tensor was partitioned and unipolar

. binary quantized versions of its submatrices were displayed
.. , *. .. in order by the computer on the LED display and stored

_;R4 '. . ' at their appropriate locations in a photographic plate placed
..- ,, -.. ., , :.. in the image plane of the lenslet array by blocking all ele-

- ments of the-lenslet array except the one where a particular
submatrix was to be stored. This process was automated

___ " --'' with the aid of a computer controlled positioner scanning
KAU -. ,:.-.. a pinhole mask in front of the lenslet array so that the

O M *. photographic plate is exposed to each submatrix of the con-
. -W1lN T... nectivity tensor displayed sequentially by the computer.

" .. .. . ,The photographic plate was then developed and positionedback in place. Although time-consuming, this method of

Fig. 6 Three optoelectronic network architectures in which the neurons loading the connectivity matrix in the net has the advantage
are arranged in two-dimensional format employing: (a) parallel nonlinear of-compensating for all distortions and aberrations of the
electronic amplification andfedback (b) serial nonlinear electronic am- system.
plificahon andfeedback, (c) parallel nonlinear electron optical amplification The procedure for loading the memory in the system can
andfeedback. be speeded up considerablby using an array of minute

electronically controlled optical shutters (switches) to re-
of which has N x N elements, to enable storing it in a flat place the function of the mechanically scanned pinhole.
2-D photomask or SLM for use in optoelectronic imple- The shutter array is placed just in front or behind the lenslet
mentation has been developed (see Farhat and Psaltis 1987 array such that each element of the lenslet array has a corre-
in list of further reading). Several arrangements are possi- sponding shutter element in register with it. An electron-
ble using this partitioning scheme (see Fig. 6). ically addressed ferroelectric liquid crystal spatial light

In Fig. 6(a), neuron states are represented with a 2-D LED modulator (FeLCSLM) (see Spatial Light Modulators and
array (or equivalently with a 2-D SLM). A two-dimensional Applications in list of further reading) is a suitable candi-
lenslet array is used to spatially multiplex and project the date for this task because of its fast switching speed (a few
state vector display onto each of the submatrices of the microseconds). Development of FeLCSLMs is being pur-
partitioned connectivity mask. The product of the state ma- sued worldwide because of their speed, high contrast, and
trix with each of the weights stored in each submatnx is bistability which enables nonvolatile switching of pixel
formed with the help of a spatially integrating square pho- transmission between two states. These features make
todetector of suitable size positioned behind each subma- FeLCSLMs also attractive for use as programmable con-
trix. The (i-j)th photodetector output represents the activation nectivity masks in learning networks such as the Boltz-
potentials %, of the (i-j)th neurons. These activation poten- mann machine in place of the MOSLM presently in use.
tials are nonlinearly amplified and fed back in parallel to Because the connectivity matrix was unipolar, an adap-
drive the corresponding elements of the LED state array of tive threshold equal to the mean or energy of the iterated
those of the state SLM. In this fashion, weighted intercon- state vector was found to be required in computing the
nections between all neurons are established by means of update state to make the network function as an associative
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memory that performed in accordance with theoretical pre- associative storage and recall, self organization and adap-
dictions of storage capacity and for successful associative tive learning (self-programming), and fast solution of op-
search when sketchy (noisy and/or partial) inputs are pre- timization problems. Large-scale versions of these
sented. Recent evidence in our work is showing that ligistic neurocomputers are needed for tackling real world prob-
neurons, mentioned in a footnote earlier, allow using un- lems. Ultimately these can be realized using integrated op-
ipolar connectivity weights in a network without having to toelectronic (integrated photonic) technology rather than
resort to adaptive thresholding. This behavior may be caused the hybrid optoelectronic approach presented here. Thus,
by the possibility that logistic neurons, with their "humped" new impetus is added for the development of integrated
nonsigmoidal response, combine at once features of exci- optoelectronics besides that coming from the needs of high
tatory and inhibitory neurons which, from all presently speed optical communication. One can expect variations of
available evidence, is biologically not plausible. Biological integrated optoelectronic repeater chips utilizing GaAs on
plausibility, it can be argued, is desirable for guiding hard- silicon technology being developed with optical commu-
ware implementations of neural nets but is not absolutely nication in mind (see J. Shibata and T. Kajiwara in list of
necessary as long as departures from it facilitate and sim- further reading). These, when fabricated in dense array
plify implementations without sacrificing function and flex- form, wil! find widespread use in the construction of large-
ibility. scale analog neurocomputers. This class of neurocomputers

Several variations of the above basic 2-D architecture were will probabl, also find u'se in the study and fast simulation
studied. One, shown in Fig. 6(b) employs an array of light of nonlinear dynamical systems and chaos and its role in a
integrating elements (lenslet array plus diffusers, for ex- variety of systems.
ample) an~d a CCD camera plus serial nonlinear amplifica- Biological neural nets were evolved in nature for one
tion and driving to display the updated state matrix on a ultimate purpose: that of maintaining and enhancing sur-
display monitor. In Fig. b(c) a microchannel spatial light vivability of the organism they reside in. Embedding arti-
modulator (MCSLM) is employed as an electron-optical ar- ficial neural nets in man-made systems, and in particular
ray of thresholding amplifiers and to simultaneously dis- autonomous systems, can serve to enhance their surviva-
play the updated state vector in coherent laser light as input bility and therefor:., reliability. Survivability is also a central
to the system. The spatial coherence of the state vector issue in a variety of systems with complex behavior en-
display in this case also enables replacing the lenslet array countered in biology, economics, social studies, and mili-
with a fine 2-D grating to spatially multiplex the displayed tary science. One can therefore expect neuromorphic
image onto the connectivity photomask. Our studies show processing and neurocomputers to p'ay an important role
that the 2-D architectures described are well suited for im- in the modeling and study of such complex systems es-
plementing large networks with semi-global or local rather pecially if integrated optoelectronic techniques can be made
than global interconnects between neurons, with each neu- to extend the flexibility and speed demonstrated in the pro-
ron capable of communicating with up to few thousand totype nets describe4 to large scale networks. One should
neurons in its vicinity depending on lenslet resolution and also expect that software development for emulating neural
geometry. Adaptive learning in these architectures is also functions on serial and parallel digital machines will not
possible provided a suitable erasable storage medium is continue to be confined, as at present, to the realm of
found to replace the photographic mask. For example in Otraightforward simulation, but spuired by the mounting
yet another conceivable variant of the above architectures, interest in neural processing, will move into the algorithmic
the lenslet array can be used to spatially demultiplex the domain where fast efficient algoriths are likely to be de-
connectivity submatrices presented in a suitable Z-D eras- veloped, especially for parallel machines, becoming to neural
able display, i.e. project them in perfect register, onto a processing what the FFT (fast Fourier transform) was to the
single SLM device containing the state vector data. This discrete Fourier transform. Thus we expect that advances
enables forming the activation potential array u,. directly in neuromorphic analog and digital signal processing will
and facilitates carrying out the required neron response proceed in parallel and that applications would draw on
operations (nonlinear gain) optically and in parallel through both equally.
appropriate choice of the state vector SLM and the archi-
tecture. Variations employing internal feedback, as in 1-D
neural nets, can also be conceived. Acknowledgement
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AN OPTICAL LEARNING MACHINE

Nabil H. Farhat and Zon-Yin Shae

University of Pennsylvania
Electrical Engineering Department
Philadelphia, PA 19104-6390

Abstract It is becoming increasingly clear, however, that
associative memory is only one apparent function

We report on what we believe to be the first demon- of biological neural nets that lends itself to
stra.ion of a fully operational optical learning optical implementation. Optics can play a useful
machine. Learning in this machine is stochastic role in the implementation of artificial neural
taking place in a self-organizing tri-layered opto- nets capable of self-organization and learning i.e.,
electronic neural net with plastic connectivity self-programming nets (12)-[141. One can safely
weights that are formed in a programmable non- state that self-organization and learning is the
volatile spatial light modulator. The net learns most distinctive single feature that sets neuro-
by adapting its connectivity weights in accordance morphic processing apart from other approaches to
to environmental inputs. Learning is driven by information processing. Learning in these nets
error signals derived from state-vector correlation is by adaptive modification of the weights of
matrices accumulated at the end of fast annealing interconnections between neurons (plasticity). It
bursts that are induced by controlled optical in- can bc supervised or unsupervised, deterministic
jection of noise into the network. Operation of or stochastic.
the machine is made possible by two developments in
our work: Fast annealing by optically induced Self-organization and learning in multilayered
tremors in the energy landscape of the net, and neural nets is being studied because of the promise
stochastic learning with binary weights. Details of developing machines that can program themselves
of these developments together with the principle, with nominal supervision alleviating thereby the
architecture, structure, and performance evaluation piogramming complexity associated with massively
of the machine are given. These show that a 24 parallel and distributed computation systems. Here
neuron prototype machine can learn, with a learning we are concerned with fine-grained parallelism
score of about 53%, to associate three 8-bit vector where computation is performed through collective
pairs in 10-60 minutes with relatively slow (60 dynamical behavior of a large number C simple
msec response time) neurons and that shifting to interconnected switching elements (net.rons). Self-
neurons with I psec response time for example, organization in such nets can be deterministic as
would reduce the learning time by roughly 104 in the error back-propagation algorithm (151 or
times. Methods for improving the learning score stochastic as by simulated annealing [161,(-17]
presently under study are also discussed, within the framework of a Boltzmann machine (18],

(193 and by a probabilistic extension of the error
1. Introduction back-projection algorithm (20).

Ever since the fit between what neural net models In this paper we concern ourselves with stochastic
can offer (collective, iterative, nonlinear, robust, learning because: (a) learning machines that learn
and fault-tolerant approach to information process- from environmental representations are expected to
ing) and the inherent capabilities of optics (par- operate in random or fuzzy environment that can
allelism and massive interconnectivity) was first best be described probabilistically. Such machines
pointed out [1],(2] and the first optical associa- learn the probability distribution function of
tive memory demonstrated in 1985 [33, work and their environmental inputs, (b) to gain an under-
interest in neural net analogs and neuromorphic standing of the role of noise in complex dynamical
optical signal processing has been growing steadily systems such as the nervous system, (c) since
(see for example 14]-[101). In addition to the learning in these machines involves finding the
vector-matrix multiplication with thresholding and global minimum of a cost or penalty function (error
feedback scheme utilized !n early implementations, driven learning) they can be also used to solve
an arsenal of sophisticated optical tools such combinatorial optimization problems whose solution
holographic storage, phase conjugate optics, and requires also finding the state of global minimum
wavefront modulation and mixing are being drawn of a cost function.
upon to realize associative memory functions.
Such functions include auto-associative, hetero- In the following, the principle, architecture, and
associative, storage and recall (l]-(91, with methodology of stochastic learning in an opto-
signal recovery and pattern recognition from electronic setting are presented in Section 2. This
partial information receiving much attention as is followed by discussion in Sections 3 and 4
potential application (6J,(113. respectively of the noisy thresholding and stochastic
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learning with binary weights schemes utilized. The (PD) array. Bipolar values of wij can be realized
results of numerica] simulation and experimental in incoherent light by separating each row of the
verification of the two schemes in opto-electronic wij mask into two subrows and assigning positive
hardware are given in Sections 5 and 6 and are values of + to one subrow and
followed by a brief discussion of these results wij negative values j
and their implications. to the other, then focusing light emerging from the

two subrows separately onto pairs of adjacent
2. Stochastic Learning and Machine Architecture photosites connected in opposition in each of the

Vl, V2 and H segments of the PD array as described
Optics and opto-electronic architectures and tech- elsewhere (2]. Submatrix A, with NlxNl elements,
niques can play an important role in the study and provides the interconnection weights of units or
implementation of self-programming networks and in neurons within group Vl. Submatrix B, with N2xN2
speeding-up the execution of relevant learning algo- elements, provides the interconnection weights of
rithms. Learning requires partitioning a net into units within V2. Submatrices C (of NlxN 3 elements)
layers with a prescribed communication pattern among and D (of N3xNl elements) provide the interconnec-
them. A method for partitioning an opto-electronic tion weights between units of V1 and H and similarly
analog of a neural net into input, output, and in- submatrices E (of N2xN3 elements) and F (of N3xN 2
ternal groups (layers) of neurons with prescribed elements) provide the iiterconnection weights of
communication pattern among neurons within each units V2 and H. Units in V1 and V2 can not communi-
layer and between layers that is capable of cate with each other directly because locations of
stochastic learning, by means of a simulated their interconnectivity weogjts om tJe wij matrix
annealing algorithm in the context of a Boltzmann or mask are blocked out (blackened lower left and
machine furmalism, has been described earlier (18). top right portion of wij). Similarly units within
A schematic of the opto-electronic network involved H do not communicate with each other because loca-
is given in Fig. l(a). The network, consisting of tions of their interconnectivity weights in the wij

mask are also blocked out (center blackened square
of wij). The LED element 8 is of graded response.
It can be viewed as representing the state of an

Vauxiliary neuron in the net that is always on to

A Aprovide a threshold level to all units by contribut-
ing to the light focused onto only negative photo-

LD E 2sites of the PD array by suitable modulation of
pixels in the G column of the interconnectivity

F ARAYS mask. This method for introducing the threshold
level is attractive as it allows for introducing a

ij fixed threshold to all neurons or an adaptive thres-
hold if desired. It can also be employed to alter

THRMOD ITICcN- the energy landscape of the net adaptively in
accordance to the behavior of other parameters of
the net. A computer works as the system controller
to calculate PiJ and Pj 4 , and also to control the

COMPUERMOLSH which implements he interconnectivity matrix

COWROLfR W. This architecture allows stochastic learning by
simulated annealing in the context of a Boltzmann
machine. The learning algorithm for Boltzmann

Fig. 1. Architecture for opto-electronic analog of machine can be summarized as follows:
layered self-programming net.

1. Choose one mapping or associated pair that the
N neurons, is partitioned into three groups. Two net is required to learn, and present it to the
groups, V1 and V2 , represent visible or environ- net. The associated pair consists of two uni-
mental units that can be used as input and output polar binary vectors one an input vector and the
units respectively. The third group H are hidden other an output vector.
units. The partition is such that N1 + N2 + N3 . N
where subscripts 1,2, and 3 on N refer to the number 2. Clamp the input vector to the VI neurons, and
of neurons in the Vl, V2 and H groups respectively, the corresponding output vector to the V2
The interconnectivity matrix, designated here as neurons.
wij, is partitioned Into nine submatrices, A, B, C,
D, E, and F plus three zero submatrices shown as 3. Employ simulated annealing method in energy
blackened or opaque regions of the wij mask. The space as described in (18) to find low energy
LED array represents the state of the neurons, configurations for the given V1 and V2 . The
assumed to be unipolar binary (LEI) on - neurons final temperature in the cooling schedule is
firing, LED off - neurons not-firing), The wj called T, and will be used later as an annealing
mask represents the strengths interconnections parameter in Cross-Entropy or G-space. During
between neurons. Light from the LEDs is smeared this step, random drawing and change of only the
vertically over the wij mask with the aid of an states of the hidden neurons (H) takes place.
anamorphic lens system (not shown in Fig. 1(11) and
light emerging from rows of the mask is focused 4. Repeat steps (2-3) N times for all associations
with the aid of another anamorphic lens system the net is required to learn, and collect co-
(also not shown) onto elements of the photodetector occurrence statistics i.e. determine the
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probabilities Pij of the jth being in the same and without having to compute the change in the
state i.e. both being on or off. energy of the net and associated Boltzmann factor

as required ordinarily in simulated annealing
5. Unclamp the V2 neurons and repeat steps 3-4 for algorithms. This leads to significant acceleration

all input vectors, and collect co-occurrence of the annealing process. Electronic control of
statistics again i.e. determine the probabil- the random light array intensity enables realizing

ities P' of the ith and jth neurons being in any annealing profile. We have presented the
ij results of numerical study of this noisy threshold-

the same state. During this step, random draw- ing scheme elsewhere (21] demonstrating that it
ing and change of both the states of the H and can perform equally well as conventional simulated
the V2 neurons takes place, annealing with some advantage in as far as the

number of iterations needed to find a global energy
6. All weights in the net are modified by in- minimum is lower. In the following, results of an

creasing the synaptic weight (Wij) between the experimental study and verification of the scheme
ith and jth neurons by a small amount of 6 if are presented.
(Pij - PlJ > 0, and otherwise, decreasing the
weight by the same amount. Note this requires An annealing experiment (see Fig. 2) based on the
multivalued Wij or incremental variation of noisy- threshold algorithm in an opto-electronic
Wij that requires the use of graded response neuri. net was devised. The "snow" pattern dis-
spatial light modulators for realizing synaptic played by a television receiver tuned to an empty
modifications in opto-electronic implementa-
tions.

7. We call steps 1-6 a learning cycle. The learn- TV COMTOERIng cycle consists of two phases. Phase one T ° u t°  A c

involves clamping the input and output units C O

to the associated pairs. Phase two involves POA SLDA
clamping the input vector alone and letting
the output units free run with the hidden ( n
units. The learning cycle is repeated again
and again and is halted after (Pij - Pj) is
close to zero for every i and J. Cm SL CL

The learning procedure described above can be
supported in the opto-electronic hardware environ-
ment described previously. However, the above LEGEND
procedures can be considerably simplified and MULTIWIRE LEOA-LEO ARRAY
accelerated by exploiting the inherent capabilities CABLE CL- CYINOICA tLENS

of the opto-electronic approach as is described in SL-SPNCRICALtCNS
CMoRANDOM TEANARY WIGHTS MASK

the next sections. CoIA-STAIPE PNOTOOETECTOR
M. MASK WITH VERTICAL SLIT ARRAY

3. Fast Annealng by Noisy Thresholding TV-TELCVISION AEC(rvcA OISPLAIING SNOw PATTERN
AA- THRESHOLOING AMPLIIERILtO ORIVER ARRAY

A spatially and temporally uncorrelated linear array
of perculating light spots of suitable size and
intensity range can be generated and imaged onto the
PD array of Fig. 1 directly such that both the"
positive and negative phorosites of the PD array
are subjected to random irradiance. This intro-
duces a random (noise) component in the threshold
levels of the neurons. The noisy threshold prodiuces
in turn a noisy component in the energv Ilinction of
the net. The magnitude of the noise components can
be controlled by varying intensity of the light
spots array irradiating the PD array. The noisy
threshold produces therefore random controlled
perturbation or "shaking" of the energy landscape .

of the net. This helps shake the net loose whenever '
it tends to get ltapped in a local energy minimum.
The procedure can be viewed as that of generating
controlled gradually decreasing deformations or
tremors in the energy landscape of the net that
prevents entrapient in a lucal !nergy minimum and
helps the net settle into the global minimum energy
state or one close to it and stay there. Both the Fig. 2. Schematic representation and pictorial

random drawing of neurons (more than one at a time view of opto-electronic scheme used to

is now possible) and the stochastic state update of verify fast annealing by noisy threshold-
the net are now done in parallel at the same time ing in a stochastic neural net.
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channel is used as the spatio-temporal opticaJ 4. Stochastic Learning with Binary Weights
noise source. We use a lens to project a portion
of the snow pattern onto the photodetector array Thu Boltzmann machine's learning algorithm
PDA of an opto-electronic neural net consisting of described earlier employs graded weights. However,
16 unipolar binary neurons of the type described from practical viewpoint, learning in artificial
elsewhere (3]. The connectivity matrix of the net- neural nets can be simplified considerably if
work was the same random ternary matrix utilized in binary weights can be used. This would pave the
earlier work (21]. The brightness of the TV screen way to using fast nonvolatile binary spatial light
is controlled by the D/A output of a MASSCOMP modulators (SLMs) such as Magneto-Optic SLMs and
computer, and the convergent stdte is monitored Ferroelectric liquid crystal SLMs. However, a
by the A/D input of the same computer. We investi- Boltzmann machine basically is an adaptive system.
gated four types of cooling profiles: linear, If the step size of adaptive changes is too large
concave, convex, and stair-case illustrated in and the sensitivity of system response to the error
Figure 3. For each cooling profile, we tested 5 signal is high, the machine will generally become
annealing time invervals: 100, 200, 500, 1000, and unstable. Since a traditional Boltzmann machine
2000 ms. For each cooling profile and annealing has ordinarily high sensitivity to the error
time interval, we do the annealing 100 times to signal, i.e., it responds to the error signal (Pij
collect sufficient statistics, and find the Pit) by modifying synaptic weights even when the
probability that the system converges to the state nj
of global energy minimum or close to it. The error signal is very small, small weight variations
experimental results obtained show that the system are essential to prevent the system from becoming
can find the global energy minimum of an artificial unstable. However, in a binary weight net (Wij =
neural net of 16 neurons in 2000 ms which correspond 1, -1) the step size of adaptive change is. large
to 32 time constants of the neurons in the test and fixed (-2 or 2). In order to prevent the
network. A net of neurons with response time of system from becoming unstable, we increase the
i p sec would anneal therefore in few tens of inertia of weights i.e. weights do not change when
microseconds and this is expected to be independent small value of PJ - P occurs. As a result, the
of the number of neurons in the net as long asi j
parallel injection of noise in the network is imple- learning procedure of the Boltzmann machine in a
mented. The cooling profile has no observable binary weight net would be identical to the pro-
effect on this result. The probabilities of con- cedure of the graded weights net stated in the
vergence to a global minimum as function of the system architecture section, except step 6 which is
annealing duration for different annealing profiles modified as follows: I (P- I )> M,set W
are shown in Table 1. , iJ - Pij - ij

1 1; if (PiJ - Pij) < -M, set Wij M -1; otherwise

no changes, where M C [0,1] is a fixed constant.

MAC-Ow= The goal of the Boltzmann machine is to minimize
a., the Cross-Entropy G by modifying the weights of the

*0 rno, net in a certain order. The G functional is an
- ~ -b-Ca d24 infor.anation theoretic measure of the distance

0.68 To between the probability distributions when an
senvironmental input is present in the net and when

To it is free running with no or pdrtial environmental
-2 input applies, and is given by

037To

G P+ (Va) ln .-(V-) (1)
a - v

0 o P-(Va)
toto to o-to to4 3 2 4t o

Annealinq Tie t where P+(Va) is the probability of the visible

units being in the a state when the visible units
are subjected to the environmental input. Namely,

Fig. 3. Cooling profiles P+(Va) represents the desired or specified proba-
bility for the a state. P'(Va) is the correspond-

ing probability when the net is free-running.

Table 1. The probabilities of convergence to a Namely, P-(V) represents the actual probability

global minimum as function of the generated from the net for the a state. P'(Va)

annealing duration for different annealing depends on the weights Wij, and so G can be

profiles. altered by changing Wij. Since, in generaL, there
are local minima in G space, a gradient descent~ flnear concauc cez step search will find a local minimum instead of the

lO0ms 0.48 0.46 0.30 0.45 global minimum. In order to reach the global
200mi 0.62 0.6 0.68 0.64 minimum in G space introduction of noise in G

500ms 0.78 0.73 0.77 0.79 space is required. However, if the noise level is
10GO rm 0.83 0.86 0.84 0.S$ w
2000mi 0.97 0.96 0 0.98 too large, the network can not learn the specified
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or desired environmental distribution. A system-
atic way for adding noise in G space, i.e. an 1.00 T I

annealing scheme in G space, has not yet been ,0.75 v
studied in detail. Here we propose the use of the u
final temperature To of the simulated annealing 0.50.......
schedule used in the energy space E as the annealing 8 A
parameter in G space, since P-(Va) is function of 0.25
Wij and hence on To. In the first few learning
cycles, we use high values of -. This will provide 0 12 37 W
high level of noise in G space. The value of To  Learning Cycle
is decreased gradually along with the number of Fig. 4. Linear weight learning curve with N-T
learning cycles. Accordingly, a simulated anneal- algorithm. Annealing schedule in Z space:
ing process in G space is realized by decreasing during the 0-25th learning cycle 2 @ 3,
the final temperature To in a similar way to the 1 @ 1.5, 1 @ 1, and 2 @ 0.1; during the
simulated annealing process in energy space which 26-50th learning cycle 6 @ 1, 6 @ 0.8,
is accomplished by decreasing the annealing tem- 6 @ 0.5, 6 @ 0.1, and 6 @ 0. This is a
perature T. Note also that an annealing schedule annealing scheme in G space.
G-space with high values of To is equivalent to a
short time interval annealing scbedule in E space,
i.e., both cases can generate high level of noise 1.00
in G space, and vice versa. Accordingly, the
annealing time interval in E space can also be 0.75
used as an annealing parameter in G space. As a I .0

result, a simulated annealing process in G space J0I .....-..........

can also be accomplished by gradually increasing U ).25 ... , .
the annealing time interval in Z space along with ethe number of learning cycles. Results of ).00 "OM''

computer simulations of stochastic learning by 0 25 50 1.00
simulated annealing in a Boltzmann machine employ- Learning Cycle
ing both gra,'ed and binary weights are presented
in the next section. Fig. 5. Binary weight learning curve with N-T

algorithm. Annealing schedule in Z space:
5. Simulation Results during the 0-50th learning cycle 2 @ 3,

1 @ 1.5, 1 @ 1, and 2 @ 0.1; during the
In these simulations we use the noisy threshold 51-100th learning cycle 4 @ 1, 4 @ 0.8,
(N-T) annealing scheme and use the annealing time 4 @ 0.5, 4 @ 0.1, and 4 @ 0. This is a
interval in E space as an annealing parameter in annealing scheme in G space.
G space. All the simulations learn to solve a
4-2-4 encoder problem [18) in the context of is possible provided that inertia is introduced in
Boltzmann machine formalism i.e. this consists of the weights update rule. It is worth noting that
having a three layered net, of the kind described not all learning trials in F!3s. 4 and 5 fully
in the architecture section, learn to form its succeed and this, as will discus3ed later-,
own internal representations of the associations determines the effectivenes. of learning in the
presented to it. For all simulations, the net network.
reaches equilibrium 100 times (25 times for each
input vector) for collecting the statistics of 6. Hardware Implementation
Pij during the input and output clamping phase.
The situation is the same for collecting the A top view of the layout of an optoelectronic
statistics of Puj. All annealing schedules are stochastic optical learning machine consisting of
stated in the corresponding Figures in the 24 unipolar binary neurons is shown In Fig. 6.
notation of 18T designating the number of itera- The net is partitioned into three layers as in the
tions I at each temperature value T. The noise architecture described earlier (see Fig. 1). It
we used is binary noise whose amplitude is either utilizes a computer controlled 48 x 48 pixel
T or -T and is decreased gradually in time and magneto-optic SLM (MOSLM) to realize bipolar binary
terminated at To. Figure 4 shows the results of synaptic weight modification. The state vector of
the linear weight learning scheme, and Fig. 5 show: the network is displayed by a 24 LED array (LEDA).
the results of the binary weight learning scheme Elements in this array belonging to groups V1 and
when the parameter M we used was 0.1. Both figures V2 can be clamped into fixed prescribed states for
show the results of 12 runs. Only two annealing any desired duration and unclamped from them by
schedules in E space of different time constants the computer controller during learning. The usual
are used for the annealing in G space. During the -type of anamorphic lens systems (CL, SL) are used
f*:rst half of the total number of learning cycles to project the state vector onto pixels of the
the shor time '-eva! a.nnealig schcdule Is MOSLH and also to focus light emerging from the 48
employed, and during the later half of the learn- rows of the MOSLM onto 48 elements of the photo-
ing cycles the long time interval annealing detector array (PDA). Pairs of the PDA elements,
schedule is employed. These results demonstrate connected in opposition, measure the activation
that annealing in C space is possible, and also potentials of the neurons in the net in a manner
show that stochastic learning with binary weights similar to that described in (3). Because of the
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drivers are used to form from the activation
potentials the state vector of the net which is
then displayed by the LEDA and acts as input to
the net to complete the feedback iteration and

S COMPUTR interconnection between neurons.
VCONTROLLER

CNSITT7. Results

SL MOSIM

PDA CFOP DRIVER LEDA The results reported in this section were obtained
by using a variation of the C-space annealingd IIH ischeme employed in the simulations of the 4-2-4

U 0 I U encoder problem discussed in Section 5. As in the
CL A SL MOSLM SL P CL scheme described there, we again generate noise in

G-space by using a short annealing time interval
A L in E-space, but instead of increasing the E-space

MU.TIW-RE -0 ,,tw,,, 40,0,, annealing time interval with learning cycle in
CADLE Ct.,t,, oLc tc(MS order to gradually reduce the G-space noise and

O.* SPP(ftCL tiNS
O.sL-.,mt4cNo.I IS,,L LC4.M'Oto achieve G-space annealing, we keep the short

"A.G ONMOECfO, AR" d aINIA'CI annealing time interval fixed. We have found

U.SwK WIN VCLStti AMR.that although the annealing schedule in E-space
A& .It.C$OL fCG -. tR4CO O.c.V &n* is now the same for all learning cycles, the amount.. 0 STAIC VtCT0Odot so,- CC!,OAz(* of effective noise in G-space. decreases gradually

and automatically because of the process of self-

organization taking place in the net as learning
proceeds. Learning begins when the initial

Fig. 6. Opto-electronic stochastic learning machine, connectivity matrix is random. Thus, during the
first learning cycles the interconnectivity matrix

relatively high transmission loss of the MOSLM/ is random. The basins of attraction in phase-
crossed polarizers (P, A) combination, an image space of the net for the vectors being learned
intensifier (II) is employed to amplify the light have not had a chance to develop yet. The activa-
pattern emerging from the MOSLM as seen through tion potentials of neurons during this phase are
the output anamorphic lens system. Examples of close.to zero. Therefore the optically injected
intensified versions of patterns stored in the noise- causes a relatively high effective noise
MOSLM and projected directly onto the image level in the net and a short duration annealing
intensifier (i.e. with the cylindrical lens LC schedule is not able mostly to find the global
in the output anamorphic lens system removed) are energy minimum of the net. However, as the net
shown-in the top row of Fig. 7. In the bottom gradually self-organizes and basins of attraction
row-of Fig. 7, are shown horizontally compressed for the vectors being stored develop, the effec-
versions of these patterns obtained when the tiveness of the short annealing schedule in find-
cylindrical lens LC was reinserted. These ing the global energy minimum improves. This
compressed patterns are proximity coupled to the corresponds to a decrease in noise level in G-
stripe elements of the PDA to form the activation space and to an ek~ective annealing schedule in.
potentials-of the neurons as described earlier. A G-space. The results of software and hardware
bank of 24 differential thresholding amplifiers/LED simulation presented below show the effectiveness

H
Fig. 7. Intensified patterns stored in the MOSLM (top row)

and horizontally compressed yersions (bottom row)
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of the fixed schedule annealing in G-space Next the hardware implementation described in
scheme. Section 6 was employed to test learning the same

three mappings or auto-associations used in the
In the software simulations, the net is trained above simulation. E-space annealing is now realized
to learn three self-mappings or auto-associations however with a linear annealing schedule of I sec.
involving three 8 bit vector pairs: duration. Because the net requires 2 sec. annealing

time interval to reach a global minimum in E-space
VI V2  (see Table 1), a 1 sec. annealing time interval is

found to be short enough to introduce noise in G-
10100000 10100000 space. All other parameters are the same as in the

numerical simulation case. We exercised the net 30
00010010 00010010 times and found 16 runs of successful learning out

of 30 tries. This corresponds to a learning score
00000101 00000101 of 53%. The learning curves obtained are shown in

Fig. 8 (bottom) and typical individual learning
with the following E-space annealing schedule: curves looked very much like those of the simula-
3M3, 3@2, 4@1, 10@0. The injected noise level tion (Fig. 8 (middle)). The time required for the
was uniformly distributed in (-T, T), T being net or machine to learn the mappings with.the above
tile annealing temperature. We run the simulation score ranged between 10 minutes to 60 minutes. This
40 times, and each run consists of 100 learning time is determined primarily by the annealing time
cycles. For all simulations, the net reaches interval utilized which depends on the time constant
equilibrium 9 times (3 times for each input vector) of the neurons in the network (60 msec for the
for collecting the statistics of Pij during the prototype of Section 6). Assuming that faster
input and output clamping phase. The same number neurons (e.g. I Psec neurons) and a suitable faster
and pattern of runs is followed in collecting the optical noise injection scheme are employed, the

statistics of P above learning time may be cut by a factor of about
ij The value of used is equal 104 and this is expected to be independent of the

to 2/9. A learning run is considered successful if number of neurons in the network because of the
the net can learn the desired 3 mappings in the 100 inherent parallelism of the optically induced
learning cycles. There are 25 runs of successful annealing scheme. Several schemes for improving
learning out of the 40 runs of simulations corre- the above learning score are presently under study.
sponding to a learning sco'e is therefore 62.5%. We find for example that reducing the number of
The learning curves are shown in Fig. 8 (top) with associations to be learned from 3 to 2 and
two individual typical learning curves shown in calculating the coincidence or co-occurrence proba-
Fig. 8 (middle)_ bilitie.s P and i by counting only on-on correla-

ij Pij
tions in the state vectors of the net during learn-

1.00, , .. ing and excluding off-off correlations, the learning

0 ..'.... '  score improves dramatically (to near perfect).

1E l,,i, .11 i 8. Conclusions

0.00. 4 We have described an architecture for partitioning
0 0 0 75 100 an opto-electronic analog of a neural net to form

-s , d-W d a multilayered net that permits self-organization
s,=,.i.t C,,a' ~and learning when computer controlled nonvolatile

spatial light modulators are utilized to realize the

L.Ojrequired plasticity. The focus here is on stochas-
,O"73 J tic learning as opposed to deterministic learning

io .A. because: (a) this leads to machines that are in-

SI "  - "herently amenable to learning sketchy representa-
/.23 .ir tions or feature spaces of practical environments

:that are best described probabilistically (proba-
o 25 50 75 100 bilistic learning), and (b) this may provide useful

T e cg Crc insight in the role of noise in biological neural
T______,_______s __._, nets. We show that departure from the conventional

V TIV simulated annealing algorithm through the use of

".75 noisy thresholding in opto-electronic schemes can
"02. _ '~ markedly accelerate the annealing process, and make205021. stochastic learning practical. Employing the noisy

0.25 k M .11.' iv HVIIIthresholding scheme, a small opto-electronic neural
O.M net (of 16 neurons) was found to reach a global

2) .. 0 75 -.... 100 energy minimum or one close to it in about 32 neuron

time constants. We also show that binary weight
learning algorithm can be used in the context of a

tfl ,l,1A,. modified Boltzmann machine. This paves the way to

the use of nonvolatile binary spatial light modula-
tors to realize the required plasticity in such

Fig. 8. Learning Performance stochastic learning nets. Such nets, having learned
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Appendix III

LEARNING NETWORKS FOR EXTRAPOLATION AND

RADAR TARGET IDENTIFICATION

Baocheng Bai and Nabil H. Farhat

University of Pennsylvania

The Moore School of Electrical Engineering

Electro-Optics and Microwave-Optics laboratory

Philadelphia, PA 19104

ABSTRACT: The problem of extrapolation for near perfect reconstruction and target

identification from partial frequency response data by neural networks is discussed. Because

of ill-posedness, the problem has traditionally been treated with regularization methods.

The relationship between regularization and the role of hidden neurons in layered neural

networks is examined. As a result, we are able to set up a layered nonlinear adaptive neural

network for performing extrapolations and reconstructions with excellent robustness. The

results are then extended to neuromorphic target identification from a single "look" (single

broadband radar echo). A novel approach for achieving 100% correct identification in a

learning net with excellent robustness employing realistic experimental data is also given.

The findings reported have potential for obviating the need for forming radar images in

order to identify targets and could furnish a viable and economical means for identifying

non-cooperative targets.

1 Introduction

For an object function o(r) of finite spatial extent, the corresponding frequency response

F(p) extends over the entire frequency domain -cc <p< +oo. Because of practical con-

straints, the frequency response F(p) can only be measured in practice over a finite fre-

quency window pi<p<P2 to give the measured frequency response Fm(p). The traditional

and widely used approach of Fourier inversion, by means of a discrete Fourier Transform

(DFT), as an algorithm for retrieving o(r) from F..(p), violates a priori knowledge of the



object function and yields an estimate of o(r) with limited resolution which may not satisfy

resolution requirement in demanding applications.

More sophisticated methods for retrieving a better estimate of o(r) from Fm.(p) exist.

The retrieval of o(r) from the partial information Fm(p) in the presence of noise is known

however to be an ill-posed problem[1],[2]. Studies[3] have been carried out for retrieving

o(r) by incorporating a priori knowledge and minimizing a certain "cost function" related

to Fmo(p) subject to a given criterion. Mathematically, the functior to be minimized can

generaly be put into the following form,

H(o) = IIFm - F112 + aR(o) (1)

where, Fm is the measured frequency response, and F is the Fourier transform of the

estimate function o(r); R(o) is the so called regularization function needed to ensure that the

reconstructed o(r) has certain smoothness properties, and-a is the so-called regularization

parameter that adjusts the degree of fitness expressed in the -first term on the right hand

side of (1) relative to the degree of regularization or smoothness -expressed in the second

term. For example, the function R(o) in Tikhonov's regularization method(1] is taken to be

a sum of the squared derivatives of o(r),

RT(o) = Z~o'k)(r)12  (2)
k

to ensure that o(r) has the required degree of smoothness. Here o(k) represents the k-th

derivative of the function o(r).

There are limitations however to all existing reconstruction algorithms; either an algo-

rithm works well only for certain class of object functions -or the a priori knowledge re-

quirement is too stringent to be satisfied. The maximumzentropy algorithm[4], which works

well for point-like object functions, can be placed into-the former class and the Papoulis-

Gerchberg's algorithm[5],[6], which requires knowledge of the-exact extent of objects, can be

placed into the later class. By inspecting equation- (1),-one appreciates that reconstructions

will be dependent upon the regularization function R(o)zchosen and a given R(o) will only

ensure a certain regularization (or smoothing) properties for-the object function o(r) and

this is the reason why different algorithms -with different R(o) work well only for a certain

set of object functions. For example, maximum entropy-algorithm works well, as stated ear-

lier, for point-like object functions and Tikhonov's regularization[1] is good for continuous

object functions. This represents one difficulty of how to choose the regularization function
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R(o) in setting up the cost function H(o) in (1). Another difficulty is how to choose the reg-

ularization parameter a for a given reconstruction problem. For practical reconstructions

from noise contaminated data, the parameter a can be chosen mathematically depending

on the signal-to-noise ratio in the data and this in turn introduces the added problem of

having to estimate the signal-to-noise ratio which in practice is not easy to do.

Neural net models offer a new dynamical approach to collective nonlinear signal pro-

cessing that is robust and fault tolerant and can be extremely fast when parallel processing

techniques are utilized[3],[7]. Neural net models provide a new way of looking at signal pro-

cessing problems that could offer solutions not thought of otherwise. A neural net processor

for solving image reconstruction problems through minimization of an energy function of

the type given in (1) has been studied earlier[3]. Here a neural net approach to the problem

involving self-organization and learning is investigated. We will make use of the neural

paradigm in a highly simplified and loose sense. Thus our nets allow for complex neurons

and complex interconnection weights in addition to the more biological plausible real neu-

rons and real interconnects. An adaptive three-layer neural net will be used to solve image

reconstruction problems and learning is carried out in the net to change the interconnections

between neurons in different layers by using the error back-propagation algorithm8]-[11].

The analogy and relationship between the role played by hidden neurons and that played

by regularization functions in neuromorphic solution of the image reconstruction problem

in (1) will be discussed and it will be shown that hidden neurons play certain regulariia-

tion role and that regularization functions in neuromorphic processors can be realized with

hidden neurons. Learning in the approach presented here is shown to enable the neural

net to form the regularization function R(o) and the regularization parameter a automati-

caUy and to carry out near perfect reconstructions adaptively and with excellent robustness.

The near perfect reconstruction results motivates the study of object recognitions with label

representations and a three-layer nonlinear net will be discussed for practical radar target

identification. A novel approach to achieve perfect (100% correct) identification of three

test targets utilizing realistic data collected in an anechoic chamber environment using scale

models of actual targets will also be presented. The findings support and demonstrate fur-

ther the viability of neuromorphic automated target identification first proposed by Farhat

et al.[16] as replacement to the traditional but considerably less economical approach of

radar imaging.
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2 Problem Formulation

For a spatially limited object function o(r) and its Fourier transform F(p), there exist the

following well known relationships,

F(p) = f o(r)e-jPrdr (3)

o(r) = f 1i F(P)ejPrdp (4)

(5)

where the spatially limited o(r) satisfies,

o r) o6 0 if r E [r, r2] (6)

= 0 otherwise

The spatial frequency variable p here has unit of inverse length [m- 1] and the spatial

frequency band corresponding to the frequency band [w1 ,w2] used for measurement will

be denoted as [pi,if]. When the frequency response F(p) is measured at equally spaced

discrete frequency points over the measurement band [pi, p2], that is at the frequency points,

pk = pi + (k -1 )Ap k-= 1,2,.. ,N (7)

where N is the total number of measurements taken, and Ap = (p2 - pi)/(N - 1), the esti-

mate of the object function by the discrete form of (4), i.e. the Discrete Fourier Transform

(DFT) algorithm can be expressed as,

o(i) =o(ri) = LP 1: " "ejhr
2rk

= ApE F(k)ePim+(k-I)AP][ni+(i_1)Ar]

i = 1,2,..,M (8)

where Ar = (r2 - rl)/(M - 1) is the- object function sampling interval and M the total

number of samples in the object domain. The resolution of the DFT estimation is known

to be proportional to 27r/(p2 - pj) and it is -not sufficient to discern object detail with

spacing finer than 21r/(p2 - pl). Several- methods for exceeding this resolution limit and

achieving super-resolution have been studied in the past[4]-[6]. The limitation of these

methods have been briefly mentioned in-the introduction. Reconstructing microwave radar

images from data processed by minimizing an energy function of the form given in (1)
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through neuromorphic processing has been considered in earlier work[3]. Results of our

continuing work on the relationship between the role of hidden neurons and regularization

functions discussed in [3] are presented in the next two sections.

3 Neuromorphic Image Reconstruction

In this section we present a brief review of radar image reconstruction by neuromorphic

processing[3] needed for subsequent discussion of the relation between the role of hidden

neurons in layered nets and regularization functions. The function to be minimized in

microwave radar imaging by neural net processing[3] has the same form as that in (1),

H(o) = ilFm - F112 + aR(o) (9)

All quantities in (9) are the same as defined earlier and the norm defined in the complex

space C is of the following form,

N
IIF. - F112 - Z IF.(i) - F(i)12  (10)

i--I

When the Fourier transform F is expressed in terms of the object function o(r), the energy

function H(o) in (9) will only be a function of the variable o(r), since Fm, is the measured

frequency response and is known. After some manipulations and by assuming the object

function to be reconstructed in microwave radar imagingis-real (see ref. [3] for details), the

following state update equation for the neuromorphic processor can be obtained,

o¢i+1)(k) = o()(k) + Ao(k) + AIk 0<-k < M (11)

Ao(k) = A [2 [Tk~io')(i) - 5k] (12)

where o(J)(k) represents the state of the kth neuron at the jth iteration; A is defined as the

gain of the kth neuron; Tki is a quantity which bears information about the transformation

(here the Fourier transform) from the space 0 3 o to the space fl 3 F and the term Ik

represents the available information Fm and is given by,
N,'

1k = 2R~ [EFm()Ki~] (13)

where Kik = c. eipi rk represents the Fourier kernel and c is a constant. Equation (13) is

identified as the real part of the complex object function generated by Fourier inversion of



the measured frequency response Fmo. The term Sk in (12) is viewed as a regularization

related adaptive threshold and is given by the following expression with Akk, Ak(k-), and

Ak(k+1) being given constants[3],

Sk = 2a[Akko(j)(k) + Ak(k_ )oM(k - 1) + Ak(k+l)o(j)(k)] (14)

for a stabilizing (regularizing) function of the following form in Tikhonov's regularization

method,

R(o)M= o2(i)+ o(i-o (i- 1) )2(
R i=) 0 Ar (15)

or in its equivalent continuous form,

R(o) = J {o0 + [o'(r)]2} dr. (16)

The neural net update transformation as expressed in (11) is carried out iteratively until

the global minimum of the energy function of (9) is reached.

Microwave radar images reconstructed (see [3] for details of the tomographic reconstruc-

tion method) using the neural net processor described in (11) showed improvement over

images reconstructed by DFT algorithm when Tikhonov's stabilizing function in (15), or

equivalently an adaptive threshold linearly related to the neural states as expressed in (14),

was used[3]. In conventional neural nets, binary neurons are used and nonlinear mapping

of neural states is used[7] and that is largely responsible for the robust and fault tolerant

collective signal processing properties of neural nets. The neural state update equation in

(11) is a linear iterative equation when the threshold of linear mapping of neural states

given-in (14) is used; in this case, the advantage exploited in a neural net using (11) to solve

the problem in (9) is only the parallel processing capability of the neural net. No use is

made of nonlinear mapping. For the problem of image reconstruction in (9), multi-valued

(analog) neural states have to be used to represent the bipolar object function. Therefore,

in order to make the neural net processor in (11) more neuromorphic, nonlinear mapping

can be introduced only via the adaptive threshold Sk. A nonlinear function of the form,

g(So) = tanhl(o.) (17)

similar to the sigmoidal function widely used in conventional neural nets[7],[8] was intro-

duced heuristically and employed for the adaptive threshold with S, being a linear combi-

nation -of the neural states[3]. The adaptive threshold Sk in (14) is a linear combination



of three nearest states only and So in (17) denotes a linear combination of possibly many

states in general. The neural state update equation in (11) can then be written as,

o(J 1 ')(k) = o()(k) + Ao(k) + Al, 0 < k < M (18)

Ao(k) = A 2Z_[Tki]o(')(i)-g(So) (19)

The neural net processor in (18) was used to reconstruct 1-dimensional functions (range-

profiles) from measured frequency response data Fm for a sufficiently wide range of aspect

angles of a scaled model of an aerospace test object and a 2-dimensional object function rep-

resenting a projection image of the test object was formed by coherently summing the back-

projections of the 1-dimensional range-profiles based on the projection-slice theorem[3],[12].

For details of this reconstruction the reader is referred to [3]. The scale model used is

that of a B-52 airplane and realistic frequency response data Fm for it were gathered for

a range of aspect angles in an anechoic chamber microwave scatter measurement facility

for two different frequency bands: one extending from 6(GHz) to 17(GHz) and the other

from 2(GHz) to 26.5(GHz). Images reconstructed from the two frequency bands by DFT

inversion and back-projection are shown in Fig. 1(a) and (b), respectively. The image in

Fig. 1(b) from the wider frequency band of 2(GHz) to 26.5(GHz) has higher resolution

as would theoretically be expected. It clearly shows the double barreled nature of the

gines which is not clearly delineated in the image in Fig. 1(a). The image reconstructed

from frequency response data acquired over the narrower band (6(GHz) to 17(GHz)) using

the neural net processor expressed in (18) with the nonlinear threshold mapping function

(17) is shown in Fig. 1(c); this image has almost the same resolution as the image recon-

structed over the band from 2(GHz) to 26.5(GHz) and the double barreled nature of engine

is clearly delineated in the image. The image quality obtained from the neural net processor

expressed in (11) with linear threshold mapping function was inferior to that in Fig. 1(c)

demonstrating the importance of incorporating nonlinearity[3]. These results demonstrate

the high resolution capability of nonlinear neural net in image reconstructions.

4 lelationship Between the Role of Hidden Neurons and

Regularization Functions

The neural net processor expressed in (18) is basically of the Hopfield variety[7]. It works

iteratively until a stable state of the net is reached to give a solution for the image recon-
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struction problem of (9). The iterative process can be implemented by a parallel feedback

loop[3] in which the new state of the net for the update iteration is obtained by feedback of

the state change Ao(k) computed from the neural state for the preceding iteration and this

is schematically illustrated in Fig. 2(a). The computation of Ao(k) can be implemented

by a subnet with one hidden layer of neurons as shown in Fig. 2(b). By comparing (18)

with Fig. 2(b) it is noted that the hidden layer neurons implement the nonlinear adaptive

threshold related to the regularization function. The point is that the weights (or synaptic

connections) used for the adaptive threshold can be combined with other weights which

directly connect the input layer with the output layer if the adaptive threshold is a linear

mapping of the neural states like that shown in (14) and in this case the neural net update

equation, (11) for example, can be rewritten as,

o(j+1)(k) = o(j)(k) + Ao(k) + Alk 0 < k < M (20)
M

Ao(k) = 2A [[Tki - cekkAki - -(k_ )A a6(k+j)iAkil o()(i) (21)

where b,j is the Dirac delta function. On the other hand, the total connections implemented

from input layer through hidden layer to output layer in Fig. 2(b) can not be combined with

other direct connection weights from input layer to output layer. This shows the necessity

of implementing the adaptive threshold representing a regularization function in nonlinear

neural nets with a hidden neural layer.

The relationship between the role of hidden neurons and regularization functions can

also be appreciated by examining the regularization role played by hidden neurons. Hidden

neurons are used to generate internal representations in neural networks and to extend the

computational (or mapping) power of simple two-layer associative networks[8]. In simple

two-layer associative networks, input patters at the input layer are directly transformed

(or mapped), through the synaptic connections between neurons, into output patterns at

the output layer and there is no internal representations by hidden neurons involved in

such a network. Because of this direct mapping property, simple networks will transform

input patterns of similar structure into output patterns of similar structure; consequently,

such network will not be able to give desired mapping outputs which are quite different

(or similar) when the inputs are quite similar (or different). A classic example of this

situation, that has been discussed by other researchers[8], is the exclusive-or (XOR) problem

illustrated in table 1.

In this example, the inputs (for example, 00 and 11) which are quite different are desired
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input pattern output pattern

00 0

01 1

10 1

11 0

Table 1: XOR Mapping

to be mapped into the same output (for example, 0). If two neurons in the input-layer are

used to represent the two input bits and one neuron in the output-layer is used to represent

the one output bit in a simple two-layer network, it is impossible to find a set of weights and

thresholds for all the neurons in such a network to perform the desired mapping[13]. The

difficulty for a simple two-layer net without hidden neurons in solving the XOR mapping

problem lies in mapping quite different patterns (11 and 00) to identical output (0) as well as

mapping quite similar patterns (01 and 10) into identical output (1). This pair of mappings

are quite contradictory and by concepts and definition of l-posedness this kind of mapping

is an ill-posed mapping. For example, in inverse scattering, the mapping (inverse) is known

to be ill-posed if the solution of the mapping or reconstruction does not exist or is sensitive

to noise in the input data. In the XOR problem in a two-layer neural net, a network. to

perform the mapping cannot be found and this can be interpreted as similar to ill-posed

problems as no solution for the problem exist.

On the other hand, a layer of hidden neurons inserted in-between the input layer and

the output layer of a simple two-layer network will enable the network to perform arbitrary

mapping from input to output via the hidden neurons if an adequate number of hidden

neurons is utilized[8],[13]. It can be easily verified that the network with a single hidden

neuron shown in Fig. 3 can perform the XOR mapping mentioned above. The network

shown in Fig. 3 overcomes the difficulty encounted in a 2-layer net by using a hidden

neuron to change the quite different input patterns into patterns with sufficient similarity

as seen by the output-layer neuron; it accomplishes the task by using one hidden neuron

for a two-bits to one-bit mapping as detailed in Fig. 3. The numbers on the arrowed

lines represent the required weights of synaptic connections among the neurons and these

are ultimately determined through learning (see for example [8]-[11]). The numbers in the
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circles represent the required thresholds of the neurons and they have been assumed to be

fixed beforehand in the example shown here. All the neurons in the net are assumed to

have only two states: on (1) or off (0). The hidden neuron has output 1 (on) only when

both input neurons have states 1 (on) and it has output 0 (off) otherwise; The output

neuron will be turned on (1) when it has a net positive input greater than 0.5, and the

output neuron will be turned off (net input smaller than 0.5) by the hidden neuron output

through the synaptic connection weight of -3.0 when both input neurons are on (1). From

the point of view of the output neuron, the inputs to it are quite similar when either the

input neurons are on (11) or off (00). Thus, the role of regularization or constraint function

played by the hidden neuron in this case is to change the degree of similarity among the

input patterns corresponding to the same output pattern. This role of providing additional

constraints among input neurons by hidden neurons can be considered to be the same as

that of regularization functions for ill-posed problems.

The regularization role played by hidden neurons can also be appreciated from the

error back-propagation (EBP) algorithm in which hidden neurons are used[8]-[11]. The

EBP algorithm for a general problem is also formulated so as to minimize the error energy

function,

E = 110 - 6112 (22)

where, 6 is the specified or the desired output and 0 is the output of the network for a

given input. For the given input and the specified output, the error signal given by E is

fed-back (or back-propagated) into the network to adjust the interaction weights (weights of

synaptic connections) among all neurons including hidden neurons. This, so called learning

procedure, is iterated until a set of weights is arrived at for which the specified output or

equivalentfy the specified minimum of the energy function is reached. Comparison of the

energy function in (9) with that in (22) shows there is no regularization operator involved

in (22). It is well known that inversions by minimizing the error energy function of the form

shown in (22) in the presence of noise are ill-posed and outputs are usually not stable with

respect to inputs. From our study of networks with hidden neurons, it is found that the

performance of the networks is quite robust with respect to inputs as shown by simulation

results presented next. The role played by the regularization operator in (9) to constrain

the output in ill-posed mapping problems is achieved with the hidden neurons in neural

networks. Impo6sible mappings in a neural network can be made possible by increasing
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the number of hidden neurons and this can be explained by the fact that regularization is

introduced or further enforced by the increase in number of hidden neurons.

5 Reconstruction by Neural Nets Through Learning

The iterative neural net equation (11) can be cast in a closed form of a non-iterative equa-

tion and implemented with a non-iterative processor when an adaptive threshold that is a

linear function of neural states, (14) for instance, is used. On the other hand, when the

adaptive threshold that is a non-linear function of neural states of (17) is used, the iterative

neural net equation (18) can not be written in the closed form of a non-iterative equation

and there is no known method to directly implement the iterative equation with a non-

iterative processor; this results from the difficulty of choosing different regularization R(o)

and different parameter ce in (9) for different reconstruction problems, since the first term

on the right hand side of (9) can be computed with a non-iterative DFT processor. This

difficulty can be overcome by a neural net through learning which enables-forming R(o) and

a automatically depending on the image to be reconstructed as will be clarified below.

Hidden neurons have been shown to have regularization effect and hence a hidden- neural

layer will be used here for the purpose of regularization to overcome the ill-posedness of

image reconstruction from partial frequency response. A three-layer neural net with feed-

forward connections for image reconstruction is ochematically shown in Fig. 4. The input

layer takes the frequency responses from measurements and neurons in the input layer,

which are complex (i.e. their states are complex and equal to the real and imaginary -values

of the measured complex frequency response), are connected to neurons in both the output

layer and the hidden layer. The synaptic connection from neurons in the input layer to

neurons in either the output layer or the hidden layer are complex and will be fixed and

taken as the Fourier weights for the image reconstruction problems in situations in which

the measurement data and the image to be reconstructed have a Fourier transform relation.

The number of neurons in all three layers will be taken to be the same for the moment and

equal to the number of frequency points at which the response is measured. Images to be

reconstructed are assumed to be normalized to unity and the output from neurons in the

hidden layer will take a nonlinear function of the form tanh(.). Mathematically, the final
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oitput neural states representing the image to be reconstructed is,

o(i) = z(i) + tanh [zrijz(j)] (23)

where r,, is real valued synaptic link between ith neuron in the output layer and jth neuron

in the middle (hidden) layer and,

z(t) = R [ WIkF,(k) ] = i,j (24)

where R[.] represents ial part of the bracketed quantity and Wk are the Fourier weights.

Once more a real obje, ion o(i) has been assumed for microwave radar imaging[3] and

z(1) is recognized as tl .al part of Fourier inversion of the measured frequency data Fm.

Learning in the neural net will be carried out next and it involves determining the synaptic

weights rij by an error back-propagation algorithm[8]-[11].

With an error back-propagation algorithm, the neural network can be made to learn

under supervision to perform extrapolation and reconstructions as follows: for a given

desired or ideal object function D, when the measured frequency response Fm.(p) is fed into

the network in Fig. 4 and the output from the network denoted as o, an error function,

E = -oI2 = o. ID(i) - o(i)l2  (25)

can be defined. Since knowledge of the desired object function D at the output of the net is

required (D is also the ideal desired image at the output), the learning is supervised. Using

the chain differentiation rule, the change of the error function with respect to the change

of weight rij can be written as,

OE O E o(i) (26)
arii .' 9O(), a9rij

From equation (25),

oE = -(D(i) - o(i)] = -6i (27)

and from equation (23),

00ri- = tanh' rijz(j) z(j)

= z(j)/ cosh2  riiz(i) (28)
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Combining now (26), (27) and (28), the following equation is obtained,

OE =_ 6bz(j)/ cosh 2 [ rijz(j) (29)

To reduce the error signal in (25), the weight ri, can be changed through gradient descent

by an amount,

Arij = 7 -

= i78z(j)/ cosh 2  rijz(j) (30)

with r7 being an constant controlling the learning rate.

The above procedure is for one given object (or pattern) function D. When there are M

ideal images of interest, the procedure is carried out M times, once for each image. For each

image the error signal is checked and if a specified error criterion (to be specified below)

is not satisfied, the procedure is repeated again for every pattern; this is repeatedly done

until the error signal criterion is satisfied for each image.

6 Simulation Results and Robustness Tests

Simulations were carried out to verify the learning concept presented above. Several ideal

object functions of spatial extent within [0,4](cm) are used. The number of neurons for

the input, middle, and output layers are assumed to be the same and equal to 21 neurons

for each layer. The small number of neurons used and the small extent [0, 4](cm) of the

function occupied are all chosen for the purpose of containing the computations involved

but they can be increased or altered at will to any desired values. The frequency response of

the object function chosen is synthesized (computed digitally) in the (6-17)[GHz] range and

subjected in simulation to the action of the network in Fig. 4. The network can determine

a set of rii links for a given set of functions to produce correct patterns within the specified

error criterion. The error criterion used is maxID(i) - o(i)l < 0.097.

One of the simulations has been done for a set of two object functions: the first one is,

oi(r) {1.0 r E [0.2,1.2](cm) (31)
0 r E [0, 0.2)(cm) or r E (1.2,4.0](cm)
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and the second one is,

0 2 (r) 1.0 r E [2.2,3.2](cm)

0 r E [0, 2.2)(cm) or r E (3.2,4.0](cm) (32)

These two function are shown in Fig. 5(a) and (b), respectively, and their spatial extents are

seen to be within (0, 4](cm). The frequency responses of the two object functions synthesized

over the frequency window [6, 17(GHz) are shown in Fig. 6(a) and (b), respectively. If the

DFT inversion method is applied to the frequency data in Fig. 6, a low resolution image

with most its intensity concentrated around the sharp edge of the object functions will be

obtained, because the frequency information in Fig. 6 is over a relatively high frequency

window. Shown in Fig. 7 is the reconstruction of the first object function from the partial

frequency domain data in Fig. 6(a) by the DFT method and it is seen that there is a

relatively broad positive pulse at the position of the rising edge of the original object function

and a broad negative pulse at the position of the falling edge of the original object function;

the two pulses are also of different amplitude, although the given object function has the

same rising edge and falling edge. When the two object functions are alternately presented

to the network in Fig. 4 and the synaptic connections are changed according to (30) of the

learning algorithm discussed in section 5, the learning process gradually converges and a set

of synaptic connections is learned by the network to give near perfect reconstructions of the

object functions within the specified error criterion when the frequency response of either

object function is presented to the network. The network accomplishes the learning in just

five learning cycles and a learning cycle is defined as the whole process of presenting once the

two patterns to the network and modifying the weights following each pattern presentation.

The value of 17 used was 0.99. We will discuss the choice of 17 further below. Figure 8

shows the outputs of the network for several typical learning cycles and demonstrates how

the network gradually learns the two patterns by adjusting its connection weights. Shown

in Fig. 8(a) are the outputs of the network for the first pattern (on the left side of Fig.

8(a)) and for the second pattern (on the right side of Fig. 8(a)) after the network has

been trained with the first pattern only during the first learning cycle. It is seen from Fig.

8(a) that the output from the network for the first pattern as input is near perfect and the

output for the second pattern as input is not like the second pattern at all but resembles

more the first pattern; this is understandable, since the network has only learned the first

pattern and it has not seen the second pattern yet. Completing the first learning cycle

by training the net next with the second pattern, we find the network is able to give near
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perfect reconstruction for the second pattern as input shown on the right side of Fig. 8(b)

but the outp.ut when the first pattern is presented is seen to have been altered and is not

as gooc. as before, being much more like a superposition of the first pattern and the second

pattern. This may be interpreted as the network having lost some of its previous internal

representation of the first pattern during the learning of the second pattern. The internal

representation of the first pattern is restored however in the second learning cycle following

the presentation of the first pattern again to the net (left side of Fig. 8(c)). The output (on

the left side of Fig. 8(c)) from the network for the first pattern as input approaches now

again a near perfect reconstruction and the output (on the right side of Fig. 8(c)) for the

second pattern as input is much better than that previously obtained on the right side of

Fig. 8(a) during the first learning cycle. This result is also understandable since so far the

network has been trained with the first pattern twice (during the first learning cycle and

the second learning cycle) and with the second pattern once only (during the first learning

cycle). The output (on the right side of Fig. 8(d)) for the second pattern is improved

during the second learning cycle after presenting the second pattern to the network for

learning and this degrades the performance (showns on the left side ef Fig. 8(d)) of the

network in recognizing the first pattern. By repeatedly and alternately presenting the two

patterns to the network -for learning, it gradually adjusts its interconnection weights to

improve the reconstructions for botL, patterns. Shown in Fig. 8(e) and- (f) -are the outputs

of the network during the third learning cycle after the first pattern and the second pattern

have been presented to the network, respectively; the performance of the network is seen

to have improved in comparison with the corresponding cases in the second learning cycle.

After the first pattern has been presented to the network -for learning during the fourth

learning cycle, the outputs shown in Fig. 8(g)-for both patterns are much better except for

the presenee of some side lobes in the output shown on the right side of Fig. 8(g) for the

second pattern as input. The side lobe level is reduced to the specified tolerable error range

of maxID(i) - o(i)l < 0.097 during the fifth learning cycle as shown in Fig. 8(h) where the

outputs of the network are given for both patterns after the network has been -presented

with the-first pattern for learning during the fifth or the final learning cycle.

How to choose the learning rate 17 is critical to the speed of learning process and the range

of suitable learning rates -can be analytically determined for learning algorithms involving

a linear function of neural states[14]. For learning algorithm involving a nonlinear function

of neural states given in (30), it is however hard to analytically determine the range of

15



the learning rate. By inspecting (30), it is seen that the learning rate 7 represents the

proportion by which the synaptic weight changes in accordance to the output error induced

by the current synaptic weights themselves. In our preceding simulations, the learning

rate is usually chosen as 77 = 0.99. It would not make sense to have the learning rate 7

greater than 1 as indicated elsewhere[141, since making the learning rate greater than 1

could cvercorrect the output error and this has been observed in our simulations. What is

meant by overcorrection here is that the output energy error which we seek to minimize

exhibits oscillations and sometimes is increased. Overcorrection usually results in longer

converging time. On the other hand, making the learning rate too small could also slow

down the learning process. Another cautionary remark in carrying out the learning process

is that the initial synaptic weights should not be equal; otherwise, the network would

obtain identical weights for all synaptic connections and this has also been noticed in other

studies[8]. The initial synaptic weights in our study were chosen randomly.

More complex shaped object functions have also been used to test the learning and

reconstruction capability of the neural net in Fig. 4. A set of two object functions is

used and these are shown in Fig. 9. The first function in Fig. 9(a) has a spatial extent

(0.2,0.8](cm) and is similar to that shvwn in Fig. 5(a). The second function is of more

complicated shape and the first part of this function is a pulse of width 0.8(cm) and the

second part is of triangular shape. After a set of synaptic weights is learned by the network

when the two patterns have been presented to the net only five times using the learning

algorithm discussed in section 5, the network were able to give a near perfect reconstruction

when the frequency response of either function is presented to it. The reconstructions of

the two object functions by the network are shown in Fig. 10. By comparing Fig. 10(b)

and Fig. 9(b), it is seen that the reconstruction of the triangular portion of the second

object funtion is perfect; since the triangular part of the second function resembles more

the undulations of a continuous function, its perfect reconstruction appears to imply the

network performs better for continuous functions.

Generaliztions and Robustness: The two simulations presented above have shown

good results when the network is used for rpconstructions of object functions which it has

been presented with during learning process. Generalization in neural networks is an issue

of practical importance[14]. It deals with the performance of a network when inputs are

not specifically among the training sets the net has been presented with during the learning

process but are similar to them. Generalization in the network in Fig. 4 for extrapolations
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and reconstructions from partial frequency information is studied here from the point of

view of the network's performance with noise contaminated frequency response input data.

From the discussion in section 4, it can be appreciated that hidden neurons play certain

regularization role and it is the regularization that makes the solution stable for problems

of extrapolations and reconstructions from partial frequency informations. The network

with hidden neurons in Fig. 4 provides the regularization needed and is expected to give

stable and robust reconstructions even in the presence of noise. Numerical simulations were

carried out to verify that. One of the simulations was done with the test object functions

used previously and shown in Fig. 5. The frequency responses of the two object functions

in Fig. 5 were contaminated with Gaussian noise with the following distribution function,

G(N) = 1 e -
N21

(2 a2)  (33)

where N represents the noise amplitude, and a2 is the variance of Gaussian noise. Defining

the signal-to-noise ratio (SNR) as,

average signal energy in the given frequency band
noise variance

_ - IF(p)12dp/o 2  (34)

we find when SNR=5, the noise contaminated frequency responses for the two object

functions are as shown in Fig. 11 for the frequency band [6, 17](GHz) corresponding to

p E [2.5,7.1](cm- 1). The difference before and after noise contamination can be seen by

comparing Fig. 6 and Fig. 11. Even though the frequency responses in Fig. 11 after noise

contamination differs appreciably from the noise free frequency responses in Fig. 6, the net-

work, which learned a set of synaptic connections wheiL the noise free frequency information

is used in the learning process, is still able to give the very good reconstructions shown in

Fig. 12 when the noise contaminated frequency information is presented to it. The recon-

structions in Fig. 12 from the noise contaminated frequency information show weak side

lobe structure compared with the reconstructions in Fig. 8(h) when noise free frequency

information is used as input. When the SNR is further decreased, the side lobe structure in

the reconstructions from noise contaminated frequency information will increase. The re-

construction from noisy frequency response data can be improved by training the netwvork

with noise free frequency data as well as some noise contaminated frequency data. For

studies with the two test patterns considered here, the network was trained with noise free

frequency data shown in Fig. 6 and also with noisy frequency responses (SNR=1) shown in
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Fig. 13. The ideal patterns needed in the supervised learning process for the noise free and

the noisy data were specified to be the same as those shown in Fig. 5. The noise free data

and the noisy data were presented alternately to the net to adjust the connection weights

until the specified e.rror criterion m.xlD(i) - o(i)l < 0.097 for every pattern was reached.

When the resulting network is tested with the noisy frequency response data shown in Fig.

11 of SNR=5 presented as the input after the stated training, the outputs from the network

are as shown in Fig. 14. In comparing of Fig. 14 with Fig. 12, the improvement of the

side-lobe structure in Fig. 14 can be clearly seen as result of mixing instances of noisy

and noise-free data sets in training the network. In practice, a network, being trained with

examples of data from its environment, is expected to encounter such examples at differ-

ing levels of SNR. The findings above suggest that this could be beneficial for enhancing

performance of the net.

7 Radar Target Identification by Layered Network

From the preceding discussion, it is seen that robust extrapolation and near perfect recon-

struction can be achieved with layered nonlinear networks. An interesting issue is whether

there always exists a network which can do extrapolations and reconstructions for a given

finite number of functions or patterns of interet. A theorem[8],[15 concerning multi-layer

neural networks, which simply states that a multi-layer network with sufficier t number of

hidden neurons is able to perform any kind of mapping from input to output, makes it

possible for the network shown in Fig. 4 to perform extrapolations and reconstructions

of any finite number of functions of interest, if enough of hidden neurons are used in the

network. For a finite number of aerospace targets, a 2-dimensional object function de-

scribing the geometrical shape of each target can be formed as discussed in [3] from the

1-dimensional functions reconstructed by a learning net, as described in the last section,

through extrapolation of partial frequency response data acquired for fixed aspects of the

targets over a sufficiently wide range of aspect angles. The 2-dimensional.image obtained

in this- fashion can provide high enough resolution through data acquisitions over a wide

range of aspect angles and extrapolations of the measured frequency response data for ev-

ery aspect. The high resolution image, like those shown in Fig. 1, would enable a human

observer to recognize and identify the target. Another more attractive and less involved

concept in target identification does not involve forming an image. It provides for target
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identification from an identifying label of the target generated by a neural net automaically

from input hiformation (i.e. frequency response data) belonging to that target[16]. This

approach is necessary in situations where aspect information (frequency response echos for

various aspect) of the target can not be obtained over a sufficiently wide range of aspect

angles because of practical limitations and consequently a high-resolution image of the tar-

get can not be formed[16j. The issue then is that of radar target identification from a single

frequency response echo for any practical aspect of the target, or a few such echos, by a

layered nonlinear network through self-organization and learning as will be discussed in this

section.

The traditional approach in nonimaging radar target recognition has been to extract

from suitably formed radar echos characteristic features or signatures of the targets and

to compare these with a library of such signatures[17]. This kind of approach is basically

a parametric estimation method and makes certain assumption about the form of the re-

turn signals or echos as expressed by several parameters. The extraction of the assumed

parameters used in the approach is usually sensitive to noise[18] and there is no adaptation

involved.

The network used for target recognition in our work is shown in Fig. 15. This network

is a variation of the network shown in Fig. 4 used for extrapolations and reconstructions.

The network of Fig. 4 has been shown to be robust in extrapolation and reconstruction

from partial information and the number of output neurons in the network was equal to the

number of samples representing the function to be reconstructed. The network shown in Fig.

15 is intended to perform robust target- recognition from partial information and the number

of output neurons in the network is chosen now to allow forming enough distinguishable

labels to represent all targets of interest. Using labels instead of object functions makes

learning easier, since the ideal object functions, that are needed to accomplish learning for

extrapolations and near perfect reconstructions and that are not easy to obtain for aerospace

targets in general, are now not required. Since label representations rather than object

functions of targets are to be used now for identification, no direct connections between

output neurons and input neurons in Fig. 15 are used and this simplifies the structure of

the network. The connections from input neurons to hidden neurons accomplish as before

Fourier mapping as in the network of Fig. 4, i.e.,

N
z(i) = R WjkFm(k)] (35)

k=1
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where WVjk represents the Fourier weight for inverting the known (measured) partial fre-

quency domain information Fm.(k). For target recognition from other than frequency do-

main information, the weights Wjk are set up in accordance to the specific transform ap-

plicable or could be determined also through training as for the connection weights from

hidden neurons to output neurons to be discussed next and nonlinear mapping can also be

introduced for the hidden neuron states. The input to an output neuron in Fig. 15 is given

by,

= rjz(j) (36)

where r,j again represents the weight from neuron j in the hidden layer to neuron i in the

output layer to be determined by learning. The output neuron state is now given by the

expression,

1 for ui > 0
o(i) = U[tanh(ui)] 0 for ui < 0 = ,2,..., M (37)

where U[.] is the unit step function and the form U[tanh(ui)] is used in (37) to show more

clearly the nonlinear summation input to the output layer and the evolution of the circuit

in Fig. 15 from that of Fig. 4. Different targets are represented by different output state.

Two groups of test targets have been used in our study: the first group contains a 100 : 1

scale model of a B-52 aircraft and a 150 : 1 scale model of a Boeing 747 airplane model; the

second group contains a 75 : 1 scale model of a space shuttle in addition to the two scale

models in the first group. Sketches of all three scale models with their actual dimensions

are shown in Fig. 16. It is noticed that the shapes of the Boeing 747 and the space shuttle

are relatively less complex than that of the B-52 airplane. Since only three aerospace target

models are used, two output neurons are used to provide lab. .. presentations for three

targets; two output neurons can usually provide labels for 22 (= 4) distinct patterns. The

state (0,0) of the output neurons in the network shown in Fig. 15 is left idle to indicate the

situation when there is no information input to the network.

To study radar target identification with practical application in mind, it would be

necessary to examine the performance of the network for all possible aspects of the target

that could be encountered in practice by the observer (the radar system) and this entails

massive data collection and storage. Because of limitations of our experimental facility,

frequency response data of the targets are collected for only a limited range of aspect angles
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extending over a range of 200 in azimuth from head-on (00) view of the targets to 200

towards the broad-side view of the targets. The elevation angle of the target was fixed at

150 relative to the horizontal. The results obtained with this limited data set are however

quite telling and representative of what can be expected with larger libraries of frequency

responses covering all target aspects of interest. Frequency domain data are collected for

100 aspect views equally spaced over the 200 for each target and this represents a separation

of 0.20 between adjacent views. The results presented next show how correct recognition

depends on the angular spacing between adjacent views and how perfect recognition from

a single echo or look can be achieved with the network of Fig. 15.

The network was first presented with frequency response data belonging to certain

percentage of the 100 aspect views of the targets for learning and each target is assigned

a label: (0,1) for B-52, (1,0) for Boeing 747, and (1,1) for space shuttle. There are 101

frequency points collected over the band [6.5, 17.5](GHz) for each aspect view and the

number of neurons in the input layer is also chosen to be 101 to represent the number of

frequency samples for an individual aspect angle. The number of neurons in the hidden

layer was chosen to be equal to the number of neurons in the input layer and also to be 101.

For learning, the error back-propagation algorithm described in section 5 for the network

of Fig. 4 also applies to the network shown in Fig. 15 and enables adjusting the connection

weight rii between output neuron and hidden neuron. When the frequency response of a

target for a specific aspect angle is presented to the network, the network iteratively adjusts

the weight rij by error back-propagation until the desired label for the target is given by the

network. The training data (frequency response for different aspects or views) are presented

in turn to the network for each target and all targets of interest are learned by the network

in turn. The process of presenting all the training data for all targets once constitutes one

learning c~cle. The maximum number of iterations observed for the network to learn a

specific target of the types used in our study at the start of the learning process is 7 and

the number of iterations decreases as learning progresses or the number of learning cycles

increases. When the network has assimilated and learned the correct representations for

all targets, the learning process is terminated. The maximum number of learning cycles

observed for the network to learn all targets is 8. All figures mentioned next are aimed at

illustrating the simple learning process of the network shown in Fig. 15 for recognitions of

typical aerospace targets.

Shown in Fig. 17 is the performance of the network for the first group of targets, the
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B-52 and the Boeing 747 scale models. It has been mentioned earlier that there are 100

aspect views (frequency responses) collected for each target. The curves in Fig. 17 show the

probability of correct recognition by the network of the two targets versus the percentage of

aspect views used for training. The percentage for training is taken with respect to the set

of the total 100 aspect views collected. The training set can be selected deterministically,

i.e. in a given order, or randomly from the set of 100 aspect views characterizing each

target. The criterion for choosing the training set is to make sure that information about

the target is evenly represented. Therefore, for example, the deterministic selection case

of 50 percent of the available aspect views as the training set can be formed by selecting

every other aspect view, that is, all the even (or odd) numbered views out of the total 100

available aspect views. For the random selection case, the training set can be formed by

selecting aspect views out of the total angular window of 200 with even probability. Our

study shows that the performance of the network when tested is virtually not affected by

whether the training set is selected deterministically or randomly and that at most a 1%

discrepancy in results for the two cases is observed. The test of the performance of the

network after it has been trained is done with all aspect views collected. Thus a certain

percentage of the test set would have been used in training the network and the remainder

of the test set has never been seen by the network before. Even though the incremental

spacing between viewing angles for the given set of test data is small (0.92), it is seen

that the network achieves percent correct recognitions of only 54% for the B-52 airplane

and 72% for the Boeing 747, when 10% of the total number of available views was used

in the training process or equivalently when the views with roughly 20 angular separation

have been used for training. The performance of the network improves nonlinearly as the

percentage of views used for training is increased. The network is seen to perform much

better in recognizing the Boeing 747 than in recognizing B-52 and this is because the shape

of Boeing 747 is less complex than that of B-52 and this enables the network to capture the

underlying structure of the Boeing 747 in its internal representation ( the rii weights) much

faster than for the B-52. The percent correct recognition of the network reaches 90% when

the percentage of views used for training increases to 40% for the B-52 and 20% for the

Boeing 747, respectively. When the percentage of views used for training for both targets

increases to 60%, the network can recognize more than 98% of the testing aspect views

presented to it correctly.

For the network shown in Fig. 15, with the connection weights from input layer neurons
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to the hidden layer neurons fixed as the Fourier weights, the input to the hidden layer can

be interpreted as the real part of the Fourier inverse of the measured frequency response

data F.. for one aspect view as mentioned earlier and this input, termed range-profile,

to the hidden layer bears information, such as rough extent, shape, fine structure, etc.,

of the target as seen from that aspect angle[3]. What the network accomplishes during

training is to extract common features or certain correlations from the training data to

form a representation for the target by adjusting its weight ri. When the network is

tested with test views, the portion of the test views which have not been presented to the

network during training can be considered as noisy versions or "correlates" of the training

set. This ability of the net to generalize, i.e. to recognize noisy data or correlated data is

an attractive feature of neuromorphic signal processing. The range-profile data in various

aspect views of a complex aerospace target can differ noticeably from one aspect angle to

another and the curves in Fig. 17 show that for a required correct recognition performance,

of 90% for example, the percentage of views, 40% for the B-52 and 20% for the Boeing 747,

or a minimum corresponding angle spacings between adjacent views used in the training

sets, approximately 0.50 for the B-52 and 10 for the Boeing 747, respectively, should be

used for training to achieve the 90% level of recognition. In fact, since the data in various

aspect views for complex shaped aerospace targets change markedly from one aspect angle

to another, the resemblance or correlation of adjacent views for some aspect angles are so

weak even for the angular spacing of 0.20 used in out data acquisition that the network

fails to recognize the targets perfectly (with 100% score) even if almost all views have been

used for training; this is evident in Fig. 17 when correct recognition for both targets did

not reach 100% before 100% of the available aspect view data have been used for training.

The results plotted in Fig. 17 show misrecognition with a probability of 1% on the average

from singli aspect view when 60% or more views have been used for training.

Perfect Recognitions: The probability of misrecognition can be made negligible and

even reduced to zero in two ways. One way which we describe here is to use more than

one aspect view for a given target in interrogating the network and use a majority decision

rule to decide the outcome. The multi-aspect views for recognizing aerospace targets in a

practical target identification system could be readily collected and presented to the network

as targets fly by the system. The training procedure for recognition from multi-aspect views

remains the same as that used for recognition from single aspect view. Shown in Fig. 18 is

the performance of the same network of Fig. 15 for recognizing the first group of targets
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from three, rather than one, aspect views after the network has been trained with the

available training set of aspect views. The three aspect views are randomly selected from

the test set (100 views) and are 'sequentially fed into the network; the outputs from the

network afterwards will give three labels whose majority vote determines the recognition

outcome. There were 33 groups of three aspect views randomly formed from the total 100

aspect views and this ensures that almost every aspect view is included in the test. The

correct recognition percentage in Fig. 18 is with respect to the 33 groups formed. It is

seen from Fig. 18 that overall performance of the network -improves by a factor of about

10% for recognition using three views over using a single view for interrogation and the

correct recognition performance increases much faster as the percentage of the views used

for training increases. The network now reaches 100% correct recognitions when 25% of

the views for the Boeing 747 and 35% of the views for the B-52, respectively, are used

for training. The network has also been tested with the second group of targets which

was formed, as mentioned earlier, by adding a space shuttle scale model to the first group

of targets. The network has been trained similarly using certain percentage of the total

available aspect views from all three targets. The performance of the network in recognizing

the second group of targets after it has been trained is shown in Fig. 19 where correct

recognition performance of the network for the space shuttle is seen to be-similar to that

for the Boeing 747 airplane. From a practical standpoint it makes more-sense to-evaluate

the performance of the net using multiple aspect views as test signals and majority vote

when the three aspect views are successive or adjacent to each other rather than being

distributed over a wide range of aspect angles. The situation is representative of probing

the net with three successive frequency responses collected from the target as it changes

its aspect relative to the measurement system because of relative motion. Such evaluation

has also been done in our research and the performance of the network when the three

aspect views are successive or adjacent to each other was found to be similar to-the cases

shown in Fig. 19 when the three aspect views are randomly selected and is therefore not

shown. Recognition using multi-aspect views may be supported by biological- vision system

in which multiple perception fields are formed(19]. The second approach for reducing the

misrecognition probability which we only mention here is to use multisensory information for

both training and interrogation. For example polarization sensitive sensors can be used to

measure the frequency response of the target for orthogonal polarization and data generated

in this fashion can be used for both training and interrogating the network to enhance the
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probability of correct classification.

Dynamic Range and Noise Considerations: There are two issues relevant to iden-

tification with neural networks which should be mentioned. The first issue concerns the

dynamic range of input signals to the network. In applying neural networks to practical

problems, it is usual to use binary digital inputs[7] or normalized inputs[21J. The range

of inputs to the network shown in Fig. 15 is not constrained (is not binarized or normal-

ized). It is the raw frequency response of the target measured for a given aspect corrected

for range-phase and measurement system response[3]. The network can be trained with

signals of arbitrary amplitude and can be tested with signals of arbitrary amplitude. No

normalization is needed for preprocessing. For example, the network has been trained with

a training set of aspect views with maximum amplitude of 0.5 (arbitrary units) for the B-52

airplane and interrogating the network with test set of aspect views of maximum amplitude

of either 1 or 106 (arbitrary units) for the B-52 airplane was found to give the same result.

This practically significant behavior, which we attribute to the highly nonlinear nature of

the network (see equations (36) and (37)), indicates that there is little constraint on the

dynamic range of the test signals applied to the trained net.

The second issue concerns the performance of the network with noisy data. Data in

our study were collected in our experimental imaging facility and the SNR in the data was

about 15-20(dB). Results in Figs. 17-19 reflect this value of SNR of the training data and

test data. The network has also been tested with signals with smaller values of SNR and

this has been done by adding to the test data artificial Gaussian noise in accordance to the

distribution shown in (33). This situation was taken to be crude representation of when the

test data are collected under nonideal situation when vibrations and wind buffeting of an

aircraft produce noisy frequency response measurement. The training data were still the

original frequency response data collected in our anechoic chamber measurement facility

and there was no additional noise added to this training data. It is seen from Fig. 19 that

the network is able to perform 100% correct recognition of the three test targets when the

network was trained with 40% of the available aspect views and tested with the test set

of experimental data without additional noise added to it. During the training process,

the output was mapped from the input as shown in (37). When noise was added to the

test set to test the network trained with 40% of the aspect views of experimental data, the

performance of the network was as given in Table 2 by the row beginning with 0 = 0 for

the Boeing 747 plane and the performance of the network for the other two target models
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SNR 11 2 3 4 5 6 7 8 9 10

8 =0 74 78 85 88 91 93 95 97 100 100

0 =0.1 94 100 100 100 100 100 100 100 100 100

Table 2: Percent correct recognition of Boeing 747 for two different values of the threshold

0.

was found to be generally similar and is therefore not shown. It is seen from Table 2 that

the performance of the network deteriorates as SNR decreases, but the network is still able

to furnish 74% correct recognition even with SNR=1 (i.e. SNR=0(dB)). The performance

of the network for this severe noise case can be improved by changing the zero threshold

in (37) to a finite threshold during the training process and by keeping the zero threshold

during the test or interrogation stage. For this case, the output neuron state in (37) during

the training process was replaced by,

o(i) = U[I tanh(ui)l - 01 1=o ahu)>0(8
0 for tanh(ui) < -0

where 0 represents the threshold. The output neuron-state during the test process is still

given by (37) or by 0 = 0 in (38). For 0 = 0.1 in -(38), the performance of the network

for the Boeing 747 scale model is shown in the last row in Table 2; the network has been

trained with 40% of the available aspect views data with no additional noise added to them.

The improvement in performance because of the finite threshold is readily noted and in the

low SNR range an improvement by roughly 20 percentage points has been achieved. As the

threshold 0 increases, the performance of the network with respect to noisy data improves.

But for very severe noise case, such as SNR=1, it is hard to achieve perfect recognitions,

since for high noise level the role played by thresholding becomes less effective.

Effect of Spectral Window: All results presented above are for frequency response

data collected over (6.5-17.5)[GHz] band in 101 points. A question of practical importance

is whether fewer data points or a narrower spectral window can be used to ease the data ac-
quisition p it sAcing target identcaton ability by the trained net. Studieb

have therefore been done to assess the effects of spectral- bandwidth and the number of data

points over the band on the performance of the network in identifying the given target mod-

els. We have done that in several ways. One way is to keep the spectral bandwidth fixed at
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(6.5-17.5)[GHz] and decrease the number of data points over the band; this is equivalent to

changing the sampling interval of the frequency response data. In doing so, the number of

neurons in the input layer which represent the number of frequency points in each measured

frequency response is decreased and so is the the number of hidden neurons which is, as

mentioned earlier, equal to the number of neurons in the input layer. Another way is to keep

the sampling interval unchanged and to choose a portion of the (6.5-17.5)[GHz] band as the

new spectral band, which again decreases the number of neurons in input layer representing

the number of data points. In this case, the.location of the selected spectral band has also

been studied and was found to have little effect on the performance of the network. In all

the above cases, the following behavior was observed: (a) when the number of data points

and the number of neurons in the input layer representing the input data points to the net

is decreased, by either changing the sampling interval or choosing a smaller spectral band,

the number of learning cycles taken by the net to learn or internalize the given aerospace

target models increases; this may be explained by the fact that for every target the amount

of information in the data sets presented to the net during training has been reduced as

the number of input data points is decreased and thus it takes relatively longer time for the

net to learn the underlying structure in the data presented to it and form internal repre-

sentations of the targets; (b) when the number of input data points to the net is too small,

the net cannot learn or form the internal representations. The learning process does not

converge. The minimum number of data points for which the learning process is observed

to diverge is 17. This specific number is the closest integer to 101/6 and is the factor by

which the sampling interval of the frequency data over the band (6.5-17.5)[GHz] has been

increased; (c) when the number of input data points to the net is decreased, the perfor-

mance of net when tested generally deteriorates; there is no clean pattern- of deterioration

and the average percentage of deterioration is 5%. For example, when the frequency band

was reduced to (10.5-15.9)[GHz] over which there were 50 data points as the input to the

net and 40% of the available 100 aspect views data (frequency responses)-over such a band

were used for training the net, the performance of the net, when it was tested with the data

over the given frequency band, in recognizing Boeing 747 is 94%; this can be-compared -with

results shown in Fig. 19 in which the net was able to achieve 100% correct identification

of the Boeing 747 when it was trained with 40% of the available views of 101 data points

over the (6.5-17.5)[GHz] band and tested with aspect views over this frequency band. The

performance of the net with narrow spectral band data can be improved by increasing the
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percentage of available aspect views used for training. When the input frequency data to

the first layer of the net consisted of 50 points over the (10.5-15.9)[GHz] band, then if the

percentage of the available aspect views used for training the net was increased to 50%, the

performance.of the net in identifying the Boeing 747 model was found to improve to 99%.

The divergence, mentioned in the preceding observation (b), occurs when the number of

input data points to the net, and hence the number of input layer neurons, is too small and

so is the number of hidden neurons, which equals also the number of neurons in the input

layer. From theoretic considerations of the mapping power of multi-layer networks[8],[15],

it is gathered that any mapping can be accomplished through a network of the type shown

in Fig. 15 provided that an adequate number of hidden neurons is used (see also caution-

ary arguments in epilogue in [13]). Therefore studies have also been done to see whether

the network can converge and learn to form the internal representations of the targets by

increasing the number of hidden neurons in the net even if the number of input data points

is too small. As mentioned earlier, when the number of input (frequency response data)

points o-, - the (6.5-17.5)[GHz] band to the net is reduced to 17, the learning process by

the net could not converge; in this case, the number of the hidden neurons was also 17.

However, by increasing the number of hidden neurons by 4 to 21, the net is able to converge

and learn the internal representations for the given aerospace target models. It should be

pointed out that, since the Fourier transform mapping between hidden layer and input layer

in the net of Fig. 15 is carried out according to the discrete summation given in (35), the

number of hidden neurons does not have to be equal to the number of input layer neurons

(see also equation (8)). This result supports the theory in [8],[15]. By increasing the number

of hidden neurons further, the number of learning cycles required by the net to converge

during training process is observed to have reduced. Once there are enough hidden neurons

and the net is able to converge to learn the internal representations for the given aerospace

target models, our study did not cleanly show tht improvement in performance, that is,

in correctly identifying the given target models, of the net when tested as the number of

hidden neurons was increased further[21].

8 Classification, Identification and Cognition

The term target identification and target recognition are frequently used interchangeably in

the literature, and we have done the same here. Actually there is an important difference
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between the two terms. The network we have described in the preceding section is not

cognitive. It can correctly identify which of the three targets, it has been taught, is respon-

sible for the sensory signal (e.g. the complex frequency response) presented at its input

by producing a correct identification label at its output. The net is shown to be robust,

in that noisy versions of its training set data are also correctly classified by triggering the

correct identifying label. This robustness aslo provides for a generalization capability, in

that when presented with a data set belonging to learned object but was not specifically

among the training set, the network will be able to classify it correctly. Generalization is

important because it means the net does not have to be trained on all data sets needed

to represent the object as dictated by angular sampling considerations (e.g. the scattering

pattern of a target of extent L must be sampled approximately every AlL [radians] when

A is the mean wavelength of observation). Without proper precautions, these robustness

and generalization features mean also that every input presented to the network, of the

preceding section, will produce a response by triggering a label even when it belongs to a

novel object, i.e. one that was not learned by the network. The network is therefore not

cognitive in that it has no mechanism for determining whether a presented signal belongs to

a familiar (previously learned) object or to a novel object. Cognitive capability is essential

for proper interpretation and use of a classifier network's response and for possible trigger-

ing of other useful mechanisms such as, for example, learning a novel input and adding it

to the repertoire of the net.

There are several ways for imparting cognition to a classification network. One is to

train the network on every object it could possibly encounter in its environment in the

course of normal operation. This approach may not however be practical as it could require

major increase in the size of the network specially when the number of possible targets to be

learned becomes very large. A second way for imparting cognition is to add detectors at the

system sensory level that analyze the received signals to see whether they belong to the class

of targets of interest or not. Usually inference rules and decision trees are needed to make

such distinction and more than one sensing modality is often indicated (e.g. measurement

of altitude, speed, bearing, size (radar cross section), polarization, etc.). A third way for

making a network cognitive is to incorporate cognitive capabilities in designing the net from

the outset[22].
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9 Discussion

Extrapolation and reconstructions by neural networks through learning was discussed in

the first part of this paper. The approach is different from traditional ones and provides

a novel way for almost perfect extrapolation and reconstructions from partial frequency

response information. The approach is seen to lead by logical extension to the problem

of target identification through the use of label representations at the output layer for

target identification in place of exact object functions reconstructed in the extrapolation

problem. The focus in using neural networks for extrapolation and recognition is on the

structure of networks as well as the iearning taking place in the networks, and not on

any particular computation carried out by a particular neuron. The networks have been

set up by studying ill-posed problems and the equivalent roles played by hidden neurons

and regularization functions. The number of neurons in the hidden layer of the resulting

networks need not be equal to that in the input layer as in most nets presented here and

this number can be increased at will. The synaptic connections from input layer to both

the hidden layer and the output layer need not be fixed as was done in this study but can

also be set up ultimately through learning to handle any reconstruction problem in which

the available data and the object functions do not necessarily have a Fourier transform

relation or when the relation is not certain or known. In our work the measured frequency

response data and the object function (the real part of the Fourier inverse of the frequency

response, i.e. the real part of the complex range profile of the target) form a Fourier

transform pair. For practical application of the target identification concept presented in

this paper, one envisions that a library of frequency responses of scale models of targets of

interest is generated by measurements under controlled -conditions in an anechoic chamber

radar scattering measurement facility for all target aspects relevant to practical encounter

scenarios between a radar system and the target. The data-generated in this fashion would

be "taught" to a layered net by training as we have described. To use such "trained nets"

to identify the actual radar targets (that correspond to the scale models used) from data

generated by a broadband radar systems in the field, attention to scaling issues would be

given by, . okng the princip-le of el.ectromagnetic simiitude[20]. .n this fashion one hopes

to avoid the tedious and costly task of forming libraries in the field using actual radar

systems and cooperative target "fly-bys".

The number of neurons in the input layer of our learning networks is determined by
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the number of available frequency samples. The relation between the number of functions

which can be learned by the network and the number of neuron in the hidden layer is

still an open question; However, the theoretically established claim[8],[151 for the mapping

power of multi-layer neuron networks, taken together with the findings of this work, provide

strong evidence in support of the use of layered networks for target recognition. Nonlinear

mappings in layered network enable the network to form the desired reconstruction mapping

region[15] to give robust reconstructions from partial and noisy frequency information. The

application of these concepts to the problem of noncooperative radar target identification

discussed here provides "convincing" evidence of the capability of neuromorphic processing

in providing results not attainable by traditional signal processing techniques.
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(c)

riuire 1: Microvwave images reconstructed by DrT shown in (a) for spectral band%%idth

6-17 )Lc(Ifzl and (b) for spectral bandwidth (2-26.5)[Gllz]; (c) image reconstructed by nonl-

linear neural net for the (6-17)1Glz] spectral band-width data.
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Figure 2: (a) Realization of neural net processor; (b) realization of nonlinear regularization

in neural net processor.
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Figure 4: A three-layered neural net for reconstructions through learning. (a) Neuron

distribution and connectivities; (b) equivalent flow chart.
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Figure 5: Two test object patterns o(r) used in simulations: (a) first pattern; (b) second

pattern.
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Figure 6: Frequency responses for the first object (solid line) and the second object (dotted

lined): (a) real part; (b) imaginary part.
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Figure 7: Reconstruction of the first object pattern by DFT: (a) real part; (b) intensity.
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Figure 9: Object patterns with more complex shape used in simulation.
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Figure 10: Reconstructions of the complex-shaped patterns of Fig. 9.
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Fi~are 11: Noise contaminated frequency responises (SNR:=5) of the first pattern (solid line)

and the second pattern (dotted line) of Fig. 5: (a) real part; (b) imaginary part.
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Figure 12: Reconstructions from noise contaminated -frequency responses of Fig. 11: (a)-

first pattern: (b) second pattern.
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Figure 13: Noise contaminated frequency responses (SNR=1) of the first pattern (solid line)

and the second pattern (dotted line) of Fig. 5: (a) real part; (b) imaginary part.
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Figure 14: Reconstruction from the noisy data (SNR=5) of Fig. 11 after the network has

been trained with instances of the noisy data (SNR=I) of Fig. 13 and the noise free data

of Fig. 6: (a) the first pattern; (b) the second pattern.

47



o(i)

0Lo- o 0 *

1 k N

Figure 15: Neural network for target recognitions.

48



(I

68 Cm

4I

! 79cm._

(a)

AJ

1%'
49 cm 49 cm

II I
II I

III I
I 747'1_ _ I - _ I

I-l- 42 cm -l 34 cm-

(b) (c)

Figure 16: Three aerospace targets used: (a) a B-52 airplane; (b) a Boeing 747 airplane;

(c) a space shuttle.
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Summary

Past research at the Electo-Optics and Microwave-Optics Laboratory [1]-[4] has led
to inception and development of microwave diversity imaging where angular, spec-
tral, and polarization degrees of freedom are combined to form images of complex
shaped objects with near optical resolution. An example-of attainable image qual-
ity is shown in Figure 1. This is a projection image-of the scattering centers on a
test object (a 100:1 scale model of a B-52). Co-polarized and cross-polarized data
sets, each consisting of 128 azimuthal looks at the target extending from head-on
to broad-side (90 degree angular aperture) and an elevation angle of 30 degrees
with each look covering a (6-17) GHz spectral window were utilized in obtaining
the image- shown. Also a novel target derived reference technique (5] for correcting
the frequency -response data for undesirable range-phase-(or range-phase time-rate
(Doppler) when the target is moving) together with an image symmetriza ion (4]
method were painstakingly developed and perfected before the image quality shown
in Figure -1 could be obtained. In later discussion we will be referring to range-
profiles of a target. The range-profile at a given target aspect is taken to be the
real part of the Fourier transform of the corrected frequency response measured for
that aspect, For a fixed spectral window and signal-to-noise ratio, the range-profile
is independant of range and varies only with aspect.

Application of concepts and methodologies developed and demonstrated in the
above research in practice wouIl ental: either (a) the use of large, albeit sparse,
recording imaging apertures to furnish the angular diversity needed or (b) the use
of a single-radar system that can track and interrogatea -target, in the presence of
relative motion, from different aspect angles in time to-furnish the required angular
diversity in an- inverse synthetic aperture radar (ISA R)-or spot-light imaging mode.
The first approach is prohibitively costly specially when the target is remote and
the angul. pertuare needed to achieve useful resolution is large. The second ap-
proach is non-real-time in nature as it requires observizg -the target over extended
tme intervals, and this may not be acceptable in numerous applications, in order
to synthesize the required angular aperture. One is therefore constrained in prac-
tice to limited angular apertures or limited observation- times and-is therefore faced
with the longstanding problem of image formation from- limited and often sketchy
(partial and-noisy) information, i.e., one is faced with the-classical problem of super-



resolution which has evaded a general solution for a long time. In other words, the
problem is to recognize the target from a few looks

Among its many fascinating capabilities such as robustness and fault tolerance,
the brain is also able to recognize objects from partial information. We can recognize
a partially obscured or shadowed face of an acquaintance or a mutilated phatograph
of someone we know with ease. The brain has a knack for supplementing missing
information, based on previously formed and stored associations.

Here we propose and describe a new concept in automated radar target identifi-
cation from a single "look" (coherent broad-band echo) based on neural net models.
We view a neural net as a multidimensional nonlinear dynamical system capable of
exhibiting powerful collective computational and signal processing functions that are
fully and therefore best described by their phase-space behavior in terms of termi-
na, or periodic, or strange attractors aid associated basins of attraction. The work

N - 32

.00 p - 0 . 4

X - 0.25

dH -6
300 min

S200- 100-

8 20 32 44
Number of vt ors stored in sequence, A

Fig.1: Microwave diversity image Fig. 2: Learning -cycles needed for correct
recall of a sequence of correlated vectors

of a complex shaped object. versus number of vectors, 9 In the sequence.

described is a direct extension ol earlier work on neuromorphic target identification
[6],[7]. We maintain that a central issue in understanding and applying neural nets
today is finding ways for imparting to a net distinct phase-space behaviour that gives
rise to desired functions. This phase-space engineering- approach represents a totally
new paradigm in signal processing that originates from known universal features of
biological information processing in the nervous system. We will present initial
results illustrating one possible method for applying -the phase-space engineering
concept to the longstanding problem of recognizing airborne targets from a single
look. In this ap,.roach phase.space trajectories are formed from data contained in a
library of range-profiles of the target within a prescribed "solid.angle of encounter"
defined by all target aspects that can possibl" be-encountered by the radar system
in typical practical situations. Initiating sucn a net from a state corresponding to
any one of these profiles would trigger motion in- its phase-space along the stored
trajectory towards a terminal "label" state or terminal attractor that identifies the
target uniquely.

2



To demonstrate this we choose a fully connected neural net of N bipolar binary
neurons with state vector sj[1, -1], i = 1,2,... , N, (representing binarized represen-
tations of range-profiles), and connectivity matrix W with elements wij. The net
updates its state vector synchronously according to si = sgn(u;), where sgn( is the
signum function and ui = Ej wijsp is 'the action potential of the i-th neuron. Start-
ing from an initial connectivity matrix w-°. = 0 the required connectivity matrix is
formed by

( A(,(M)S(m+1) (in) (Mn))
J9. = w( -8* 0.1) II 0

where 4 ) is the connectivity matrix at the end of the k-th learning cycle, j ") is
the m-th state vector in a sequence of M vectors, o 'n) is the state vector arrived at
after one iteration from an initial state Pm), A is a positive real parameter control-
ling the learning process. In the above notation s(M+) is taken to be a label vector
identiflying the sequence. A learning cycle consists of repeated application of the
above-formula-until the change Awi i = w ) - w -' ) becomes sufficiently small such
that subsequent testing of the formed -net by initiating it from any member vector
of the stored sequence results--in its-sequencing through all following-members and
terminating at the-label vector. The number of learning-cycles needed to-learn M
vectors using -the- above- procedure is shown in' Figure 2-for a-neural net of N = 32
neurons (similar behavior was-observed for N- 64 and 128). The stored-sequence
consisted of vectors with parameter p fixed at 0.4 (roughly similar behavior was
observed -for- 0.1 < p <-0.9). The Hamming distance between any pair of vectors in
the-sequenceranged from 6 to 9 (6 < dH < 9), thus the vectors-in the-sequence- were
well -correlated. The value of the learning rate parameter A was-0.25. It-is seen that
the training procedure-or learning algorithm converges rapidly as long as M ; N.
As M increases beyond N the learning time, measured- in number of learning cycles
is seen to increase exponentially. It is worth noting however that a sequence with
M > N can-still be stored provided that a longer learning period can be tolerated.
The sequential storage-and recall capabilities exhibited here-exceed- by far -the-stor-
age capabilities of Hopfield-lEke- nets [8] where-entities are-stored as limit points in
phase-space -rather than-in trajectories or-orbits as- is-the-case -here. To-evaluate-the
performance-of -the-net, with wij obtained by the above training procedure, it was
initiated from randomly selected phase-space- points and its-subsequent motion in
phase-space from iteration to iteration observed. We find such random probing-to
be a useful tool in phase-space engineering work whereby qualitative information
is obtained about the strength and nature of the basins-of attraction-of a terminal-
attractor and on whether it possesses spurious basins of attraction or not. Ninety
such probing vectors whose Ilamming- distance'frcm any-of-the vectors stored-in-the
phase-space trajectory exceeded a given mlnimu-n distance dHr..,. were used. For
dHmi,, = 1 or 2 not a-single-probing -vector triggered the net in its trajectory. The
scheme presented- appears therefore to discriminate well against initial- states that
do-not belong to -the stored object information. Simulations were-also- carried out
to verify that several distinct terminal attractors with unique basins of attraction
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can be formed in the same network. We have been able to store 3 such attractors
with filamentary basins of attraction formed from anywhere from a total of 20 to 40
vectors with ease. The ideas presented here demonstrate the viability of the neuro-
dynamical principles of object recognition from a single look. They have important
imphcation for distortion invariant radar target recognition and have potential for
obviating the need for costly radar imaging systems of the type required for re-
mote target identification from formed images. An extensive research effort aimed
at reducing the concepts presented here to practice is currently'underway in our
laboratory. Aspects of this program will be briefly discussed.

This research is being carried out under grants from ARO and ONR, and with
partial support from NSF and JPL.
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